International Journal of Theoretical Physics, Vol. 42, No. 3, March 2092003)

Foundation for Quantum Computing
S. A. Selesnick

Received February 6, 2003; accepted February 19, 2003

In this paper we introduce a minimal formal intuitionistic propositional Gentzen sequent
calculus for handling quantum types, quantum “storage” being introduced syntactically
along the lines of Girard'sf courseoperator !. The intuitionistic fragment of orthologic

is found to be translatable into this calculus by means of a quantum version of the Heyting
paradigm. When realized in the category of finite dimensional Hilbert spaces, the famil-
iar qubitarises spontaneously as the irreducible storage capable quantum computational
unit, and the necessary involvement of quantum entanglement in the “quantum duplica-
tion” process is plainly and explicitly visible. Quantum “computation” is modelled by

a single extra axiom, and reproduces the standard notion when interpreted in a larger
category.
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1. INTRODUCTION

Quantum computers effect computations by exploiting the subtle laws of
guantum physics: a profound qualitative shift from classical computational
paradigms. Quanta are not objects in the ordinary sense, and their manipulation is
not mechanistic in the sense that the movements of beads, pebbles, cog-wheels,
chalk, or graphite particles—or even currents within a solid-state device—are. Al-
though ordinary computers use small components whose size begins to encroach
upon the domain where quantum effects may have a bearing on their physical
behavior, their operatioruacomputational elements—implementing as they do
Boolean operations upon arrays of notional bits—are entirely classical.

Indeed, it is perfectly clear that ordinary “classical” computational devices
(knotted cords, slide rules, Macintoshes,) require for their use (or program-
ming) no knowledge of the physical laws underlying their operations as physical
entities existing in the world. Of course, these devices operate according to the
laws of physics but these laws are timtmselveexploited in the course of such an
operation or computation: it is not necessary—and would be absurd—to preface

1Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis,
Missouri 63121; e-mail: selesnick@mindspring.com.
383

0020-7748/03/0300-0383/ 2003 Plenum Publishing Corporation



384 Selesnick

the definition of a Turing machine, say, with a summary of the laws of classical
physics. The same (classical) computation could, in principle, be performed by
any sufficiently complex device, regardless of the nature of its physical instanti-
ation. In this sense, the notion of a “classical” computation seems more abstract
than the quantum notion since the underlying physics has been abstracted away in
the classical case, whereas it seems to be part and parcel of the current quantum
computational paradigm.

This circumstance has the appearance of necessity, since, as macroscopic
experimenters, we have come upon the quantum domain only recently, and our
apprehension of it depends upon delicate and complicated instrumental interfaces.
In consequence, the foundations of current quantum computational theory have
both an ad hoc and a post hoc appearance, conditioned as they are by classical
thinking about computation and additionally encumbered by the interpretative
burdens of standard quantum theory. For example, all quantum computational
considerations spring from an assumption about the nature of the basic quantum
computational unit. This is universally accepted to be what is now referred to as
the qubit:namely an idealized quantum system having a two-dimensional Hilbert
space of states. This is, obviously, the quantized version of the two-state classical
computational unit known as the bit, the basic Boolean logical unit. In attempting
to provide dogical foundation for a theory of quantum computation the argument
that the qubit should be taken as the fundamentabeutusét is the quantization
of the classical Boolean bit is clearly Whiggish. If quantal things underlie classical
things, then the bit should appear in the macrocbgtauset is the degenerate
macroscopic limit of the more fundamental qubit, and vioe versa Thus, one
should seek enorefundamental theory of quantum computation that yields up the
qubit as the basic quantum computational unit without explicit recourse to specific
classical prototypes.

The student of “quantum computing” is indeed faced with a daunting task,
as Hirvensalo (2001) notes: an understanding of the fundamentals of the two most
notoriously counterintuitive disciplines known to Mankind—namely quantum the-
ory and the theory of computation—must be gained at the outset. Moreover, it is
exactly themostcounter intuitive aspects of quantum theory, which lie at the heart
of the current quantum computational ideal.

No such epistemological hurdles obstruct the path to an understanding of
theories of classical computation, as we have noted. In this paper and its sequels
we attempt to redress this asymmetry; that is to say, we attempt to lay a foundation
for an abstract theory of quantum computing from the bottom up, the bottom being
a certain variant of standard quantum logic. At the foundational level, the theory
is essentially independent of physical considerations, except insofar as these are
already present in the axioms of quantum logic.

The layout of the paper is as follows: Section 2 consists of a minimal intro-
duction to those elements of standard nonquantum natural deduction and proof
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theory that will be extended to the quantum case in Section 3. The latter section
contains a brief overview of those parts of quantum logic that will be relevant in
the attempt to construct a minimal calculus for managing quantum “resources.” It
becomes apparent from these considerations that the classical Heyting paradigm
fails in the quantum case.

In Section 3.3 we introduce a purely syntactic minimal intuitionistic Gentzen
sequent calculus based upon presumed properties of quantum typesywces
and show (Section 3.4) that a translation of the intuitionistic fragment of orthologic
into this calculus may be affected simply by invokingj@antumversion of the
Heyting paradigm. The calculus is then interpreted in the category of finite dimen-
sional Hilbert spaces, with the aid of Grassmannian quantum set theory (Section
3.5).

In Section 4.1 we specify a one-step “quantum computation” purely syntac-
tically in the sequent calculus through the introduction of a single extra axiom.
When this axiom is realized in the category of finite dimensional Hilbert spaces,
the familiarqubitarises spontaneously as the irreducible storage capable quantum
computational unit.

The notion of quantum storage, accompanied by the concomitant dual notion
of quantum copying or duplication, emerges directly from a consideration of the
rule of Contraction as it is realized in our sequent calculus, and the need to invoke
guantum entanglement in the course of implementing it is immediately apparent.
This is discussed briefly in Section 4.2.

In Section 4.3 we subvert our constructivist quantum principles in an attempt
to accommodate classical time as the multiplexed storage capable version of the
symbolic time quantum, or step, used in the newly added axiom. Although they are
rather formal, these maneuvers reproduce (in a fairly natural manner) the standard
picture of a quantum computation as being a one-parameter unitary dynamical
group acting in the Schdinger manner upon a tensor product of qubits.

2. CLASSICAL COMPUTATIONAL PARADIGMS
2.1. Natural Deduction

The irreducible essence of any kind of computation is the act of reducing
an expression to another expression according to an agreed upon set of rules. A
prescribed set aitomicexpressions, together with a set of rules for manipulating
or rewriting them, comprises the backbone of what is knowndeslactive system
The study of such systems has come to occupy a significant sector of the modern
theory of computation.

A deduction(or derivation) in such a system is a sequence of rule-based
replacements (or rewrites) of expressions starting from a set specifiedonss
One may view such a deduction geometrically in various ways: as tree-like, for
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example, with axioms as leaves and the concluding expression as the root. Although
we have been vague about the nature of the “expressions” involved, it should
already be clear that a deduction is very much like a (computer) program, which
proceeds in steps to reconfigure patterns of data.

The expressions of interest are, of course, those to be found at the roots of
deductions and it is important to remark on the obvious fact that these are produced
by entirelyconstructivgprocesses. A derived expression may be specified—in the
sense that it may beonstructed—from the axioms together with the particular
deduction tree at whose root it sits. Clearly, this association (of derived expression
with deduction tree) is not one-to-one, since a given expression may have many
deductions (or, indeed, none). From a constructivist viewpoint it would be better
to associate a derived expression withskeof deductions leading to it. This kind
of association lies at the heart of Heyting's interpretation of intuitionistic logic as
that logic which arises from a wholesale adherence to constructivist principles (cf.
Section 2.2).

Insofar as we deal with logic per se in this paper we shall deal only with
propositionallogic: that is, we ignore quantificatiol,(3) entirely. However, there
is no doubt that a full treatment along the lines to be advocated in this work should
include quantification (cf. Finkelstein, 1996).

In this section we informally explore some of the issues associated with deduc-
tion by examining a certain system knownregural deductionSpecifically, we
shall discuss the natural deduction system for minimal implicational intuitionistic
(propositional) logic. This treatment combines elements from the early chapters
of both Girardet al. (1988) and Troelstra and Schwichtenberg (2000).

The basic object of interest in this system isleductionof a formula (or
sentencgA, say, which, after Girarét al. (1988), we shall denote by

R 2.1)

The dots stand for subdeductions, and the whole structure is to be regarded as a
finite tree, or at least as being tree-like, since the tree structure will soon be vitiated.
The first rule of deduction, dnference is that a single formula by itself is
a deduction (of itself). Strictly speaking, this axiom should be asserted only for

a set ofatomicformulae: the result then follows for all formulae. We will follow
custom in this abbreviated overview by omitting the complication of specifying
the atoms at this stage.

There are two other rules of inference, which enable new deductions to be
constructed from old ones. One rutgroducesthe implication sign= and the
other ruleeliminatesit. The expression of these rules requires some notational
preliminaries. Supposé appears in aingletop node (oreaf) of a deduction
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whoseconclusionis B. Then we may unambiguously write

A
E (2.2)
B
In this case, the rule of introduction posits a new deduction;
A
: (2.3)
|
AsB

(Here, the=1 labels the rule being used—namebg-“introduction”—to extend
the tree: itis frequently dropped when ambiguity does not threaten.)

The occurrenceof A is said to beopen(or live) in (2.2) but considered to
be closed(or killed, or discharged by the application o= 1 in (2.3). The open
occurrences of a formula lik&in (2.3) are said to bleypothesefor the deduction.

Now, A may appear and be open in other places, for instance in ambient
deductions, and in this case we would wish to keep track of which open occurrence
of Aisbeing discharged atthe! inference. This can be accomplished by labelling
A and then invoking the label at the point of inference. Thus, in place of (2.3) we
now write

AU
5 (2.4)
A= B

u, = |

As noted, it is possible that open occurrence®\aohay appear a number of
times in the deduction leading ®, and we may choose to discharge a collection
of these at the inference. The deductions leading to those occurrenaes tife
chosen collection are all then discarded simultaneously at the inference. Members
of such a collection may be grouped under a single label, since there is no need to
distinguish among these discarded deductions. The notation for such a collection
of open occurrences &is [A]". Of course, there may be other collections of open
occurrences oA that are not chosen for discharge at the inference: these remain
open after it.

The complete statement of thel rule now reads

Al
B (2.5)

u, = |
AsB T
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(Here the degenerate case 81 being empty is allowed. This empty case would
still require a label at the inference. Thus,
B
A=1B

is a legal deduction. The labels the empty class of occurrences, which is dis-
charged at the inference.)

There is some linguistic awkwardness in referring A9 §ince it denotes a
pattern ofoccurrence®f the formulaA and is not, strictly speaking,set

The other rule of inference in this system, which is a rule for eliminating
is justmodus ponensnd may be rendered as

v (2.6)

A A>B 2.7)
—g —=E

Here, two deductions—oA and A= B—are combined to produce a new de-
duction with conclusiorB. The hypotheses of the two subdeductions above the
inference line, taken together, are the hypotheses of the new deduction (2.7).
(There are natural ways to simplify certain deductions. For instance, a deduc-
tion of the form
[A]"
B u (2.8)
A A=B
B

may be replaced by the following simpler direct deduction, considered to be equiv-
alentto it:

(A (2.9)
B
The understanding here is that each (discharged) occurredciad]" (in (2.8))
has been replaced by a copy of the new deductioA witroduced on the left (in

(2.8)).)

2.2. Heyting Paradigm and Curry—Howard Isomorphism

The constructive notion of implication introduced in the preceding text is not
the ordinary implication of ordinary propositional calculus (PC), about which we
will have more to say in Section 3. Rather, it should be interpreted intuitionistically
in light of the so-calleddeyting paradignfHeyting, 1956), which gives a semantics
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for formal intuitionistic logic (IL) (cf. Troelstraand Schwichtenberg (2000, Section
2.5.1, p.55), where the attribution also includes Brouwer and Kolmogorov). In this
interpretation of IL, a formula is intuitionisticallyalid only if a deduction can
be explicitly presented or constructed. The interpretatioA ef B in (2.4) then
becomes—if a deduction oA" can be constructed then a deductionBtan
be constructedyia the deduction above the inference line in (2.4). After this
encapsulation of the whole process in the forméla> B, the open assumption
A" is no longer needed and may be discharged (or closed), the deduction leading
to it being, in a sense, discarded.

In the previous section labels were introduced merely to keep track of the
flow of closings of collections of open formulae as thd inference is enacted.
(As Girard et al. (1988) observes the link this labelling scheme sets up between
formulaand inference point effectively destroys the illusion of a tree-like structure.)
The significance of this apparently innocent labelling scheme may be realized by
another appeal to the Heyting paradigm. Since, in this interpretation of IL a formula
is intuitionisticallyvalid only if a deduction of it can be produced, a formula may
beidentifiedwith its set of deductions. In more formal terms, a formula determines
atype Asay, and a label of Ais considered to beariableof type A, for which
the standard notation is. A. (Formal definitions of types, terms, variables, etc.,
may be found in the works cited in the preceding text. For our purposes in this note
the informal intuitive notion of a type as being a special kind of set, while variables
refer to elements of such sets, etc., will suffice.) Returning to the labelling scheme
of the last section, we note that the labheh AY could be regarded as standing in
for a generic deduction oA: it is in fact not merelyA that is being labelled but a
deduction ofA. In view of the Heyting interpretatiorA" can be rewritten as: A.
Similarly, theu in [A]Y stands in for generic deductions of the occurrence& of
in the collection A, which are all “discarded” simultaneously at the inference.
Consequently,A]Y can be rewritten asif A].

Now thatu is being regarded as a variable of type this status should
be recorded at the point of inference in (2.5). Likewise, the variable of B/pe
corresponding to the deduction Bf which appears above the inference line in
(2.5), and which “depends” upon the deduction’dfibelled byu, should also be
explicitly annotated. Then, (2.5) may be rewritten as

[u:.A]

[th] (2.10)

AULUA— B
Here, the symbolk serves tabind uwithin t. The typeA— B is the indicated

“function” type, which, in terms of sets, is the setfafctionsfrom A into B. As
noted in the last section, the Heyting paradigm interprets intuitionistic implication
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A= B as a function from the set of deductions of the formAldo the set of
deductions of the formul8.
The expressiohu.t is the name of the function (of type— B) that produces
t upon the “input” ofu.
Note also that the binding af within t via the symboli in the expression
AUt recapitulategxactlythe discharging of the associated formula occurrences.
Similarly, the inference rule (2.7), which eliminates, may be rewritten in
type theoretic terms as

SA tA— B (2.11)
ts:B

wherets denotesapplicationof the function typd to s.

Using these translations of the inference rules, any deduction may be used to
generate aX-term,” which completely describes, or encapsulates, the deduction.
For example, consider the pattern of discharges in the following two deductions
of A= (A= A) (from Troelstra & Schwichtenberg, 2000, p. 25):

AU AU
AY A AV A A A"
A A (2.12)
u w
A=A~ A= A
A= (A= A A= (A= A

(cf. (2.6) for the labeV in both cases.) An application of the translation rules given
above to the left-most deduction in (2.12) yields
u:A
WA AWUA—-> A
(Av.u)w: A (2.13)
AU (AV.UWA — A
AW.(AU.(AV.U)W)A — (A— A)

The reader may check that the the translation of the right-most deduction in (2.12)
yields the nonequivalent-term:

AV.(AW.(Au.u)W):A — (A— A). (2.14)

The calculus of.-terms (without explicit typing) was posited independently
by Church in the 1930s as a means of investigating the computational and logical
possibilities of pure functionality. Today the theory goes by the name “simply-
typed r-calculus.” The observation, by Curry and Feys (1958), that the transla-
tion given above induces a complete structural isomorphism between the minimal
natural deduction system outlined in Section 2.1 and simply-typediculus,
apparently came as a surprise to logicians.
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Readers familiar with.-calculus may note that the contraction of deduction
(2.8) to deduction (2.9) corresponds to the replacement of an expression of the
form (Au.t)s by the expressiob[u/s], where the notation means thats to be
replaced byint. This is known ag-conversion in thé-calculus context (modulo
many glossed details) and is the basic rule for evaluating functions.

The computational resources of simply-typedalculus and othex-calculi)
have been well studied: see for example Asperti and Longo (1991), Gitaid
(1988), Gunter (1992), Mitchell (1996), Stoy (1977), and Troelstra and Schwicht-
enberg (2000) among many others.

The isomorphism sketched above may be extended to one that obtains be-
tween the minimal intuitionistic implicational deductive fragment of Section 2.1
with inference rules for conjunctiom{ and disjunction ¥) appended, and an
appropriately supplemented version of simply-typecalculus.

For example, the inference rules for conjunction are three in number (one
Introduction and two Eliminations), namely

A B
| 2.15
ArB (2.15)

AAB AAB
" A1E B 2 (2.16)

There are identifications among certain deductions involvingor example,

is identified with A (2.17)

and similarly for the other elimination rules.

Disjunction in an intuitionistic system is independent of conjunction (since
De Morgan duality does not obtain) and is generally contentious. In our system
there are two Introduction rules, namely

v 1l and v 2l (2.18)
Av B Av B
and one problematical Elimination rule, namely:
[Al [B]
AvB C C
v E (2.19)

C

The problem here is the extraned@swhich introduces an uncontrollable
elementinto the business of deriving general theorems about deductions (see Girard
et al, 1988, Ch. 10).
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To extend the Curry isomorphism to this supplemented natural deduction
system, we again appeal to the Heyting paradigm. For the conjunétioB to
be intuitionistically valid, we must possess a deductiorAcinda deduction of
B, and know which deduction belongs to which formula; that is, we must possess
an ordered pair of deductions. If a formula is identified with its set of deductions,
then the set of deductions &fA B should be identified with the product of the set
of deductions ofA and the set of deductions &f.

Thus, thea of formulae should be associated, in the extended correspondence,
with the product x, of the corresponding types.

Similarly, Av B is intuitionistically valid only if we have a deduction of
A ora deduction oB, and an indication ofvhichone of these formulae has been
deduced. The collection of such pairs constitutes the disjoint union (or direct sum
in the category of sets) of the sets of deductions of the constituent formulae.

Thus, thev of formulae should be associated, in the extended correspondence,
with the sum+, of the corresponding types.

The Curry correspondence thus extended is part of W. A. Howard’s contri-
bution to the full isomorphism, which now bears the name Curry—Howard (cf.
Troelstra and Schwichtenberg (2000, p. 59). The other part of Howard'’s contribu-
tion to the isomorphism involves quantifiers, which we are ignoring here.)

The importance to computational theory of isomorphisms of the Curry—
Howard type is that, since formulae may be regarded as types through their use,
deductionsnay be concomitantly regarded@smputationgor programg, which
transform types (patterns of data) into types in stepwise fashion. Reversing this
perspective, such isomorphisms allow us to regard the apparently static program
represented by a-term in a dynamical light, since such a term may be unfolded
to reveal the underlying deductive structure, with its flow of openings and closings
of assumptions. It is this aspect of the Curry—Howard isomorphism that arguably
has had the most impact.

2.3. The Gentzen Sequent Calculus

The Gentzen sequent calculus may be regarded initially as a metacalculus for
handling deductions in natural deduction systems, though it has been developed
in various directions as a style of deductive reasoning in its own right. In its guise
as a metacalculus for natural deduction, the sequent calculus delineates certain
symmetries and structural aspects of the underlying deductive system which remain
hidden, or at least less apparent, if one remains fixed at the natural deduction level.
This organizing power of the style has had a major impact on the proof theoretic
aspects of deductive logic.

The basic object is theequent

A (2.20)
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inwhichT" andA stand for (possibly empty) finite sequences of formulae. (Empty
sets of formulae are usually denoted by their omission, d3hn which is Eq.

(2.20) with A empty.) It is possible—and indeed advisable—to allow more gen-
eral assemblages of formulae. This becomes apparent when natural deduction is
used as the underlying model: thén etc., would stand for collections of for-
mula occurrences. The use of sequences will suffice for our purposes. Upper
case Greek characters will have this (standard) connotation in our discussions of
sequents.

The informal reading of (2.20) is along the lines 8" = VA .” This reading
can be adduced from the natural deduction model, if (2.20) is supposed to describe
a deduction with a sdt of hypotheses and conclusionAn it forces the interpre-
tation of - A as asserting the truth ®A andI' - as asserting the falsity @fT".

(In keeping with this model, and noting again the disruptive effects of disjunction
in intuitionistic systems, sequents in whighconsists of at most a single formula
are termed “intuitionistic.”)

In Gentzen calculi the inference rules are often divided into classes: structural
rules, logical rules and an “identity group.” A deduction in sequent calculus is
usually referred to asproof.

By way of example, we shall briefly describe the rules for a non-intuitionistic
minimal propositional sequent calculus. (The horizontal line in a rule represents
the inference of the sequent below it from the sequent or sequents appearing im-
mediately above it.)

Structural Rules

These refer to the management of formulae within sequents. (The appropriate
label appears to the right of the inference line, as in natural deduction: LE for left
exchange, etc.)

Exchange
A B, I'EA '-A, A B, A
—————— LE ———— RE (2.21)
B, AI'FA I'EA,B, A A
Weakening
'-A A
— W ——— RW (2.22)
ATHEFA A, A
Contraction
A ATEA A A A
——— LC —— RC (2.23)
ATEA A A

These rules appear quite innocent at first sight: they are what one would expect
from the presumed properties AfandV in the informal reading of the sequent
'+ A as “AT'= VA" They appear less innocent in the readingiof A as a
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description of a deduction in a natural duction system of the type described in the
last section. In this reading, Weakening corresponds to the possibility of introduc-
ing spurious or null collections of occurrences of a form@avhile Contraction
corresponds to the possibility of amalgamating certain collections of occurrences
of A. Further innocence is lost, as Giragthal. (1988) points out, in aoperational
reading of the sequent calculus. In this reading, formulae, considered asitgpes
Curry—Howard, are regarded sssourcesandI'FA has the informal interpreta-
tion: “Use upI to produceA.” Then LC (2.23), for example, has the connotation
that, while twoAs are required to produck, we can get away with only one use

of A to effect the production oA. The “resource”A must then bestorableand

can be copied, or cloned, for reuse. One might sayAhadmits storager is stor-

age capableClearly, many real resources, like coins, do not have this convenient
property: if an item requires two coins for its purchase, then one will not suffice.

The Identity Group
This terminology seems to be due to Girard (Girat@l (1988)).

Axiom

This is the analog of the first rule of inference for natural deduction, namely
that a (wellformed) formula is by itself a deduction. The same provisos obtain: the
axiom is properly stated only for atomic formula and then can be shown to obtain
for general ones. Since we have continued to procrastinate on the issue of atomic
formulae, we shall state the axiom in the customary form, to wit:

A A Ax (2.24)

Cut
rAA ATVEA
LIVE A A
The CUT rule is an extremely reasonable meta-rule for the handling of natural
deductions. Indeed, its natural deduction analog can be deduced from the other
rules of natural deduction. The usefn this rule is akin to the use of alemmain
a mathematical proof, or the use of a subroutine in a computer program. In these
forms, the CUT rule would seem to be part and parcel of both of these august disci-
plines, among others. It is, however, problematical from the point of view of proof
theory itself, since the appearance and disappearance of the possibly extraneous
and uncontrollableA greatly complicates tree handling techniques. It may there-
fore come as a surprise to learn that, even in very general Gentzen calculi, cuts can
be removed from any proof. Thatis to say, any proof involving uses of CUT may be
recast without using CUT. This is the gist of Gentzen'’s justly famous “Hauptsatz”
(cf. references already cited). This centrally important result is rather counterin-
tuitive at face value since it seems to imply that the usual modes of proof—for
instance in mathematics—are somehow redundant. In the programming analogy

cuT (2.25)
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the removability of cuts seems more plausible: to “remove” the cuts—i.e, subrou-
tine calls—from a program, compile it into runnable object code. Or, to put it more
dynamically,run the program. This is, of course, simplistic, but encapsulates the
main idea behind the proof.

Logical Rules
These rulegntroducethe logical operatorss/{a the right rules) anéliminate
them (ia the left rules).

A FA A A T"FB,A

_ o ATA A =01 RA (2.26

T AgAALEA DT FAAB, A, A (2.26)
IAFA T, BEA T-AA

T2 Riv, i=0,1 (227

IT . AVBLAA ' TrAvA.A /! (2.27)
FEAA I',BEA I, AFB,A

R= (2.28)

LT, A= BEFA, A = 'HA=B,A

For intuitionistic systems, all of these logical rules—with the exception of
L v—are restricted merely by allowing at most one formula to the right of turnstiles.
Only in the case of lv is the intuitionistic version not just a restriction of this kind,
since theA, A’ is disallowed. Instead, the rule is replaced by

IAFA T,BEFA
Ir'T",AvBF A

whereA contains at most one formula.

For anintuitionistic Gentzen sequent calculus it is generally possible to pro-
duce a natural deduction system that might be presumed to underlie it. This is
done by judiciously (and recursively) assigning terms to sequents, and then re-
garding these terms ascalculus-like descriptors of underlying deductions. (The
correspondence sending a sequent proof to its associgtth is generally not
one-to-one.)

For instance, for the intuitionistic version of CUT, which reads

'HA AAFB

(2.29)

(2.30)
AFB
the term assignment takes the form
't:A xA AFuB
(2.31)

I, A+ u[x/t]:B

This is a formalized version of an obvious replacement of deductions in
natural deductiort labels the deduction o from I', andu labels the deduction
of B from the deductiorx of A andA. Thus, fromI", A we may deduce8 by
using the deductiohin place ofx, thereby cuttingA out of the lower sequent.
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Readers familiar with-calculus will recognize that sequent proofs conducted
without the use of CUT will producaormal A-terms, i.e. terms that are not re-
ducible. The fact that CUT can be eliminated is essentially equivalent to the fact
that simply typed.-calculus is (strongly) normalizable: everyterm is reducible
to a unique normal form (cf. works already cited).

More to the point for our future purposes is the observation (cf. Abramsky,
1993) that theeomputationabspects of such deductive systems are seen to reside
precisely in the process of cut elimination.

The Gentzen sequent formalism reveals structural and behavioral attributes
of the underlying, or associated, natural deduction system and the equivalent term
calculus. Among its lessons, we emphasize

e the critical importance of the structural rules, and their sensitivity to dif-
ferent semantic readings of the associated natural deduction system;

e the fact, just noted, that all computation resides in the process of cut elim-
ination;

¢ the value—much appreciated by computer scientists—of the explicit typing
of terms and the careful maintenance of such typing through the course of
deductions.

In this paper and its sequels we shall attempt to carry these lessons into the
quantum domain.

3. QUANTUM COMPUTATIONAL PARADIGMS
3.1. Quantum Logic

The minimal core of quantum logic is known agthologic (OL). This is
simply the weakening of classical logic, which results when one does not insist
that AND distributes over OR: it is the logic that might have replaced classical
logic had classical logicians failed to notice this distributivity in their ambient
world of macroscopic objects.

The realization of (first-order) orthologic as a (nonintuitionistic) deductive
system seems first to have been achieved by Goldblatt (1974); see also Dalla Chiara
et al. (2002). The atoms or primitive symbols are

(i) adenumerable collectiof, of propositional variablea, ay, . . .;
(ii) the connectives- (“negation”) and (“conjunction”); and
(i) parentheses.

The set® of (well-formed)orthoformulae(or justformulae until this desig-
nation becomes ambiguous) is constructed from these in the usual way. Elements
of ® will be denoted by lower case Greek characters, . . ., taken usually from
the beginning of the alphabet. (We shall try to reserve characters at the end of the
alphabet for elements of sets of various kinds.)
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Since there is no implication sign i a formal deductive calculus is based
on sequentsnvolving at most single formulae and written in the form

atp (3.1)

for «, B € ®, the intended reading of which is thAtmay be inferred fromv.
Certain sequents are designatedxsi®ms and there are threwlles of inference
namely, for any formulae, 8:

Axioms

Ol ata«a

02. anBhra
03. anpFp
o4, ab~~a«a
O5. ~~ala
06. anm~ak B

Inference Rules
a8 BFYy
aby
a8 abFy
abpgny
abk B
FF~a

or7.
Os8.

09.

A conjunctive connective may be introduced according to the definition

aup=~((~a)n(~p) 3-2)

and dual forms of O2, 03, O6 and O8 follow.

A string 81, ;... ; S, of sequents is called jroof of its last membes, if
eachs is either an axiom or follows from some preceding sequent through the use
of one of the rules of inference.

If there exists a proof of a sequerit 8 we write

ato B (3.3)

and say thap is deducible fromx in orthologic
If « o B for anyformulaw, we say thap is atheorem of orthologior an
orthotheoremand we write

Fo B. (3.4)

(Note that this condition is equivalent&a ~ « o 8.)
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We recall that there are completeness theorems for ordinary PC and IL, which
assert connections between the analogous forms of deducibility in these logics
and the behavior of morphisms, or valuations, of formulae into certain classes of
lattices: Boolean algebras in the case of PC and Heyting algebras in the case of IL
(cf. Bell & Slomson, 1969). There is an analogous characterization of orthologic,
involving a class of lattices calleattholattices

An ortholatticeis a bounded latticéL, u, m, 0., 1,.,”) where ( }is a unary
operation callesdbrthocomplementatiosatisfying

complementarity : Vae L,ana =0_,aua =1,
unitarity : a”’ =a
antitonicity : aCb iffbCa

It is easily shown that any ortholattice satisfies De Morgan’s laws, e.g.
aub=(anby. (3.5)

An ortholattice is said to beompleteif arbitrary subsets have meets and joins:
a complete ortholattice satisfies the complete generalizations of the De Morgan
laws. Examples of ortholattices include all Boolean algebras and lattices of closed
subspaces of Hilbert spaces, with the usual operations.

Given an ortholatticé., a functionv, :®¢ — L determines &aluationupon
® via the recursive definitions:

Vi(e 1 B) = vi(e) NvL(B) (3.6)
vi(~a) = vi(«) 3.7)

The algebraic characterization theorem for orthologic may be stated as
follows.

Theorem 3.1. (Goldblatt, 1974. y ko aiff vL(y) E v, («) for all ortholat-
tices L and all valuationsv.

Corollary 3.1. ¢ aiff v (@) =1, for all ortholattices L and all valuationsv

In classical PC the material implication connective)(is expressed in terms
of other connectives, namelp— q=—pV (, a problematic interpretation en-
tailing certain anomalies of great antiquity. In the absence of the distributive law,
we might expect further problems for an implication connective cobbled together
out of other connectives. This expectation is maximally realized; in fact no viable
implication for orthologic can be manufactured out of the other connectives at all.

In ordinary classical PC the interpretation of material implication; g, as
—pV g has the consequence that for any Boolean algebra valued valuation

v(p—a)=v(p) vv(@) =1 iffv(p) < v(a). (3.8)
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However, this situation fails to hold in OL, as the following example shows

(1)
(@ & @ @
©

In this (nondistributive) ortholattice, known as tGéinese lanternwe have
a’' LUb=1butaZ b. Thus (3.8) would fail for certain valuations into this lattice of
certain orthoformulae, showing thatx LI 8 would not be a viable interpretation
of a deductiorw -, 8 in OL, in view of Theorem 3.1.

There is another characterization of classical implication. In any Boolean
algebra the elemem — q, defined as above, is characterized by the following

property:

(3.9)

r<p—q iffrap=<gq (3.10)

from which it follows thatr = p— q is the largest element satisfyingn p <g.
Such elements need not exist in nondistributive lattices, so this avenue of general-
ization seems to be closed to us: it will reopen later.

The condition (3.10) is an expression of the fact that a Boolean algebra, when
considered as a category whose objects are its elements and with morphisms given
by <, is cartesian closedp — g being the exponential object usually denoted by
gP (cf. Mac Lane & Moerdijk, 1992, p. 48).

What we seek is an orthoformula (or orthopolynomialxind—denote it
by a —— g—for which« 4 B iff o a—— 8. For any orthovaluatiom we would
then have

Vi@—~>pB) = V(a)=>Vv(B) =1 iff v(e) E V(B). (3.11)

This is a problem involving only one pair of elements in the target lattice
at a time. If these elements themselves lay inside a Boolean subalgebra of the
target lattice then the conditior{«) C v(8) would be equivalent to the condition
V() U v(B) =1 and the hunt for (with the hope that, at least in this case, we
would havev(e—— 8) =Vv(x) U Vv(8)) might be greatly simplified, albeit at the
cost of specializing the logic itself.

Let us then confine our choice of algebraic models to the subclass of ortho-
latticesL satisfying the following condition:

Fora,belL, if aC b then the subortholattice df generated by andb is
distributive, hence Boolean.
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Ortholattices satisfying this condition are precisely trthomodularones, ex-
amples of which include Boolean algebras, which are just the distributive ones,
and the lattice of projections in\W*-algebra, an example that includes the case
of Hilbert lattices namely, the lattices of closed subspaces of Hilbert spaces. The
Chinese lantern, depicted above, is also orthomodular (cf. Dalla GHiata2002,
Kalmbach, 1983).

There is an important notion gbmpatibilityamong elements in an ortholat-
tice, an appellation having a physical origin. Namely, an eleragatsaid to be
compatiblewith an elemenb, writtenaCh iff

a=(anbyu(@nhb) (3.12)
It turns out that in an orthomodular lattice:
aCb iff bCa (3.13)

and that this condition characterizes orthomodularity.

In a Hilbert lattice this condition is equivalent to the commutativity of the
corresponding projections and for this reason the compatibility relation is often
calledcommutativityand written more symmetrically as< b. This symmetry is
justified in an orthomodular lattice in view of (3.13). Note that- b iff a <> b’ and
that if aC b thena <> b. We can also definerthogonality(_L) in an ortholattice,
namely,a L b iff aC b’. Thus, ifa_L b in an orthomodular lattice we also have
a<b.

Now we return to the search for an implicative connective in the subclass of
orthomodular ortholattices. It can be shown (Dalla Chétral., 2002, Kalmbach,
1983) that in an orthomodular lattice there are exdotcandidates for an impli-
cation— satisfying condition (3.11). Of these, only one satisfies the following
“weak cartesian closure” property (cf. (3.10)), also called the “weak import-export”

property:
if a<b, thencCa—b iff cmaChb (3.14)
and is given by
a—b=au(anb). (3.15)

This connective has come to be called Sasaki hookthough the list of
names of other pioneering toilers in this field include those of Finch, Mittelstaedt
and Hardegree: please see the references already cited, particularly Dalla Chiara
etal (2002). By reason of (3.14) the Sasaki hook is often the implicative connective
of choice for the logic that is characterized by algebraic models consisting of
orthomodular lattices and valuations into them. As Goldblatt has shown (Dalla
Chiaraet al., 2002; Goldblatt, 1974), this logic may be axiomatized by adding a
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single axiom (labelled OM) to the list 01-06, namely
an(~au(@np))kFB. oM

Deducibility in this logic is defined as in OL, and will be denotedHy.
We will refer to thisorthomodularlogic as OML. (Warning: Dalla Chiarat al.
(2002) labels it OQL.)

Thus, we have the following theorem:

Theorem 3.2. « Fom B iff Fom a—> B iff vi(a) E v (B) for all orthomodu-
lar lattice valued valuations v.

Now it happens that the Sasaki hook, optimal though it may be, is, neverthe-
less, rather anomalous: it can be shown for instance that

a—> (B—> ) (3.16)

is not always true. Insofar asy> reflects deducibility in OML, it would appear
from the invalidity of (3.16) that this type of deducibility is far from being con-
structive in the sense of natural deduction: cf. equation (2.6) for instance. This
intractability, unsurprisingly, shows up also in Gentzen calculi for OML. Here,
CUT is generally not eliminable (cf. Gibbins, 1987, for example).

Our conclusion is that standard OML is even less suited to the purpose of
constructive deduction than is ordinary classical PC, over and above the obviously
nonconstructive axioms O5 and O6. In Section 3.2 we will attempt to redress this
by extending the intuitionistic “formulae-as-types” paradigm into the quantum
domain. This will take some care, and to prepare the way we first briefly examine
some of the possible pitfalls by resorting to another class of models for OL, which
are of greater semantic interest than the algebraic ones.

3.2. Kripke Orthomodels for OL and the Failure of the Heyting Paradigm

Since the introduction of orthomodularity apparently did nothing to amelio-
rate the nonconstructive failings of quantum logic, we jettison this condition and
return to a very brief consideration of the core logic OL from a proof theoretic
perspective as a step along the path—paralleling the route taken in the classical
case—to a more expressive resource-sensitive version of quantum logic.

The Kripke modeldor orthologic seem to have appeared first in Goldblatt
(1974) and have been extensively elaborated upon by Dalla Chiara and others (cf.
Dalla Chiaraet al.,, 2002; Rawling & Selesnick, 2000). To describe them, some
terminology is needed.

An orthogonality space = (W, L) comprises a sal/ and a binary relation
1 €W x W which is anorthogonality namely, it isirreflexive (not x L x) and
symmetrigx Ly iff y L x).



402 Selesnick

Forx e W, Y C W we write
X LY iff xLy VyeY (3.17)
and define
Y ={x:xLlY} (3.18)
In Goldblatt’s terminology (Goldblatt, 1973) C W is said to beegular if
Y=, (3.19)

Then the clasf(F) of L-regular subsets & is a complete ortholattice under the
partial order given by set inclusion, with the lattice meet given by set intersection
and_L as orthocomplement. It is not hard to show that,Eoi- C W

EcE (3.20)
and
(EUF)! =E+tnF* (3.21)

A proximity spaces a pair (W, ~) in which the relation %" is reflexive
(w~w) andsymmetriqv ~ w iff w~v). Clearly each proximity spac@V, ~)
determines an orthogonality spa¥, L) wherex L yiff x %y, and, conversely,
each orthogonality spac@V, 1) determines a proximity spac@V, ~) where
x~yiffnot x Ly.

A Kripke orthomodelM = (W, ~, @) is a proximity spacd® = (W, ~) and
a function (called aaluation) ¢:® — R((W, L)) satisfying

o(~a) = o(a)* (3.22)
olen B) = o(a) No(B). (3.23)

We will say that a formula is
true at the “world” w € W, and writewE= 4 «,
iff we o(x);
true on a set EC W, and writeEE «,
iff we o for allw e E—that s, iff E C o();
true in the Kripke orthomodeM
iff it is true at every world inM;
Kripke valid and write= «,
iff it is true in all Kripke orthomodels.

Theorem 3.3. o a iff E«.
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A question that now interposes itself concerns the semantics of disjunction.
In a Kripke orthomodel we have, for formulaeandg, andE C W as above:

EErmaupB iff ECo(aup)
= o(~(~an~B))
= (o(@)* No(B)")*
= (o(@) Vo)™ by(321)
2 o(e)Uo(B) by (320) (3.24)

Thus, the interpretations of orthodisjuncts are, in a sense, double negations
of ordinary disjuncts of propositions—these are not necessarily themselves or-
dinary disjuncts: there are generally more “worlds”dtx L 8) than there are
in o(a) U o(B); that is, one could have/k= ¢ o LI 8 While neitherwi=a « nor
WE B holds.

When viewed constructively, a proof of an orthotheorem of the fenmg
would require a deduction of the truth of an assertion of the fatsn, o L 8 at
eachw in an orthomodel. Thuay could be used in the labelling of a deduction
of o L' B while not entering into the labelling of a deduction of eitheor §.
Deductions of orthodisjuncts are not necessarily determined by deductions of either
components. Herein lies one of the highly nonconstructive aspects of quantum
logic and one which stands in the way of a direct application of the standard
Heyting paradigm to effect a transition to an intuitionistic “quantum” type theory,
since, in this case, the classical set of deductions of a “quantum” disjunct cannot
be identified with the sum of the classical sets of deductions of the individual
components. Rather, some quantum version of the paradigm is called for.

3.3. GQ: A Minimal Intuitionistic Gentzen Calculus for Quantum Resources

Standard quantum logic has been found wanting as a deductive system since
deducibility in it is intrinsically nonconstructive, a failing it shares with classi-
cal PC. In the classical case the path to a more expressive deductive logic led,
through (intuitionistic) proof theoretic systems, to type theories like simply typed
A-calculus and beyond.

In this section we initiate an entirely syntactic attempt to specify a “quantum”
type theory in formal imitation of the Curry—Howard correspondence. As we have
learnt, the ordinary set theoretic type combinators are inadequate as intuitionistic
models here, so new ones must be introduced: this will be done by means of an
intuitionistic Gentzen calculus that we shall dub GQ. Upper case Latin characters,
A, B, ... shall be used to denote formulae (or, synonymously, types) in GQ and
we leave the choice of atoms in abeyance.
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The multiplicative operation on types that is supposed to correspond intu-
itionistically to ther of OL (asx corresponds te. in the ordinary Curry—Howard
correspondence) will, for obvious reasons, be denoteg bSimilarly, the oper-
ation on types corresponding intuitionistically to thef OL will be denoted by
@, and that corresponding to( ) by ( )*. These symbolsg, &, ( )*) should not
(yet!) be confused with their linear algebra counterparts: their use here is purely
syntactic, the purpose being to bring to the foreltggcal connections between
the intuitionistic fragment of OL to be discussed later, and the Gentzen system
at hand. Different symbols could (and probably should) be used, but this option
seems specious.

Recall that an intuitionistic sequent calculus is one which is supposed to
be a metacalculus for some (notional or derivable) underlying natural deduction
system, so that only single formulae—or none at all—are allowed on the right
hand sides of sequents. We introduce the notaflaio represent either a single
formula or the absence of a formula (i.e. the null sequence). Otherwise, upper case
Greeks will denote (possibly empty) sequences of formulae.

In constructing these rules, we have taken seriously the notidiscfiarging
hypotheses in natural deduction. The turnstilavill be read as a kinematical
interface through which formulae (quantum resources) may be discharged, this
process being registered by the production of the starred version of the formula on
the other side of the turnstile. The idea is that a deduction

A

: (3.25)

B
in the notional underlying natural deduction system results in the discharge of
A while B is produced. Put another wak is dischargedn the presence of B
resulting in the following inference:

A
B
A*® B
In sequent language, this is expressed as
AFB
FA*®B
which may be read: iA producesB then it is the case thak is discharged in the

presence o0B.
If A produces nothingAt, then it may discharge by itself:

At
- A

(3.26)

(3.27)

(3.28)
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Similarly, from the presumed behavior of the quantum interface, a sequent
of the formI", Ak B has the reading thak in the presence df producesB, and
may be discharged through the interface, leadingndischarged. This yields the
rule

I, AF-B
'HA*®B

We presume in addition that this interface is symmetrical to the extent allowed
by the structural constraints of an intuitionistic calculus. For instance, if it is the
case thatA and B are “present,” namely A® B, then A may be discharged to
leaveB no longer in its presence, and this process is also a proof (i.e. a deduction)
in the calculus:

(3.29)

FA®B
AFB (3.30)
(Here,B may be absent.)

Similarly, this may be done in the case in whith—- A® B. A may be
discharged in the presenceloto leaveB by itself:

'-A®B

, 31
LA B (3.31)

The rules (3.29) and (3.31) are the rulesnefationin our calculus. Here,
negation is seen as a form of discharge, absorption or annihilation, and should not
be confused with negation in OL, just as negation in PC should not be confused
with IL-negation. (In fact, negation in IL may also be seen as a form of annihilation:
to IL-negate a formula one must deduce falsity from any purported proof of it. That
is, identifying the formulaA with its set of proofs, and denoting lfythe falsum
or logical constant for falsity, the IL-negation 8fmay be writtenA = f. ThusA
is consigned to the logical vacuum, or annihilated.)

We now consider the structural rules. We shall retain the Exchange rules,
insofar as they may be applied under intuitionistic constraints, since there is no
implicit logical ordering of the component formulae in OL conjuncts. (Issue could
certainly be taken with this point, but we shall adopt this option here, if only for
reasons of simplicity.)

The other structural rules are more problematical. We will adopt as our in-
formal guide in these considerationg@antumversion of the Heyting paradigm.
Thus, we will think of the resource (or typé) as behavindike a “quantum set”
of deductions of some underlying OL formula. Thus, thensof type A will be
like deductions of some OL formula, but subject to quantum operations such as
superposition. This should not be taken in any literal sense, since our purpose here
is merely to arrive at a collection of logical or syntactical rules. (Later, we will
indeed take this quantum version of the Heyting paradigm more literally.)



406 Selesnick

Consider the rule of Contraction (cf. (2.23)), which has only a left form in
the intuitionistic calculus, namely
A,ATED
A THD
In the classical case of a notional underlying natural deduction system this is
justified, since the sets of labels for the two collections of deductions of the formula
corresponding to the typ& can be amalgamated into a single set, while remaining
intact, and discharged simultaneously: only a single invocatioA isftherefore
required. These resources are storage capable. Deductions associated with one
occurrence ofA can be copied, or duplicated for the benefit of other occurrences
of A. In our quantum case certain terms associated with one of the occurrences of
the resourcé may be annihilated in the course of a deduction while some of those
associated with the other occurrence may remain. Thus, amalgamation into single
collection may not be possible, owing to the evanescence of quantum processes,
and we must jettison Contraction as a general rule. This has the consequence that
general quantum resources of this typerawestorage capable.
The meaning of Weakening (cf.(2.22)), which it will prove convenient to
express in the form

(3.32)

=D
IrA-D’

may be interpreted analogously, in the natural deduction model, as the capability
of introducing spurious, or null, collections &f occurrences which have no con-
textual side effects. This seems contrary to the general behavior of actual quantum
resources: the introduction of new quantum acts into extant arrangements of acts
may interfere with the behavior of those arrangements. (Consider, for example, the
interposition of a filter between orthogonal polarizers on an optical bench. Pho-
tons previously blocked may now pass through the array.) Umldsssomehow
insulated, its introduction might affect the conté&xby mixing or superposition
so thatl", A+ D is not guaranteed. Thus, we must also relinquish Weakening as
a general rule.

If this were all that could be said about the structural rules, our investiga-
tion would end here. For, in the absence of storage capable elements, no useful
computations could be carried out, even in principle: iterative processes would be
blocked and the calculus would be useless. Consequently, inspired by Girard in a
similar context (Girarat al., 1988), we will institute a search for possible special
instances of quantum resources for which the structural rules might be reinstated,
or rather, we search for the logical rules which specify such resources. Before em-
barking on this, we note that, in light of the discussion above, if a storage capable
resource could be found for which Contraction holds, then the annihilation or dis-
charge of the terms belonging to separate instances of it in any sequent in which it
appears more than once, must, inasense, be coordinated. Thus quantum duplication

(3.33)
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would necessarily be associated with some kind of coordination or correlation of
terms distributed over separate instances of the resource. This observation will be
confirmed in detail later, a circumstance that has profound consequences.

We continue to adopt as our informal guide in this search a quantum version
of the Heyting paradigm, which, curiously, will turn out to work formally as
well, revealing better behavior than its non-quantum counterpart. Let us suppose,
then, that a quantum typ& is in fact the “quantum set” of deductions of some
orthoformulax. Then the terms oA denote deductions of, so certain terms of
A may be annihilated or discharged without affectingtself. Thus,o« may be
used taegenerate ASo, in this case, reuses of the resource—and its concomitant
storage capability—could be envisaged. Of coutseannot generally be regarded
as being of this type, but we could try this idea at the next level. Namely, let us
assume that the (quantum) set of proofsfotould itself be assembled into a
guantum type, denotedA! (pronouncef course A—name and notation due to
Girard). Then identical considerations applyAaather than tax, with ! A now
being storage capable and, presumably, subject to the rule of Contraction.

Moreover, reverting to the case in whigtmodels the quantum set of deduc-
tions of some orthoformula, there is a collection of deductionsw€orresponding
to instances of axiom O6. Each such deduction corresponds to the inclusion of the
proposition @ into any proposition in any Kripke orthomodel. We could intro-
duce a spurious OL deduction of the fornt-, o, wherez denotes thguantum
falsum which is a logical constant sent to O in any algebraic orthomodel. This
spurious deduction af would then give rise to a term of typ& denoting in a
sense the generic spurious quantum collection associateddwRiecapitulating
this at the higher level in whiclA replacesry and !A replacesA, the existence of
such a spurious quantum collection—associated now vith-¢ould presumably
be used to implement Weakening fak In place ofAin (3.33).

In addition to Contraction and Weakening—which we now posit for formulae
of the from !A—we require two more rules pertaining to the operator !. The first,

IA-D

., (3.34)
T,IAFD

reads informally: ifl" in the presence oA can produce the resourd®, thenl’
in the presence of the type representing all proofé afin also produc®. This
would be reasonable if we were to adopt the axiém A, which we shall be
doing.

The second rule asserts the basic defining property of the operator !: namely,
in informal terms, it specifies the explicit circumstances under which a forfula
may determine A. To wit

THA

_ 3.35
ITHA ( )
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(Here T'=1Aq, 1A, ..., 1A if T=Aq, Ay, ..., Ay.) If A has been produced
through the possibly repeated use of the storage capable resaurtlsri these
resources may also be used to produce the multiplexed or repeatable ver&jon of
namely !A. In this rule a formulaA must actually be present.

We can now dismantle the preceding verbal scaffolding and formally display
the basic sequents of our calculus. Recall thagtands for a single formula or
no formula (the empty sequence). When it appears in the fobnthe® sign is
understood to be absent whBnis empty.

GQ
Structural Rules
Exchange
A, B,I"+D r'-A®B
———— — LE _PA®B RE (3.36)
I'B, A I"+~D 'B® A
Weakening
r-bD
— W No RW 3.37
I'/A-D ( )
Contraction
IA,JAATHD
————— LC No RC 3.38
'A, T D ( )

The Identity Group

Axiom
AF A Ax (3.39)
Cut
A AT'FD
CuT (3.40)
r'TeED
Logical Rules
Conjunctive (Multiplicative) Connective
A, B-D A T"'HB
L® —  R® (3.41)

A B-D 'I"-FA®B
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Disjunctive (Additive) Connective

IA-D I,BFD A

L "% R 3.42a
T,AGBFD ®  Trrass "™ (3.422)
reBs
"% R 3.42b
TEApB @2  (342D)
Negation
I'-A®D A D
LAY —2P2 R 3.43
L ALB r-A®D (3.43)
|
I AED T A
AP LA =Y (3.44)
I IAFD IT HIA

The ruleL® is aformationrule, while R® is inherited from O8, etc. It is
apparent that GQ bears a close resemblance to a fragment of Linear Logic (LL) (cf.
Abramsky, 1993; Asperti & Longo, 1991; Blutd al., 1993; Girarcet al., 1988;
Seely, 1989; Troelstra & Schwichtenberg, 2000; among many other references to
this vast subject.) Itis in fact equivalent to a degenerate form of a fragment of this
logic, namely, a version of LL in which the operat@sand® coincide with their
dual forms. (LL often flirts with misconstruals by using the sigrior negation.)
Various formal connections between versions of LL and versions of quantum logic
have already been proposed (cf. the last part of Dalla Cleiaah (2002) for an
account of some of these and references to others). None of these seem to be
obviously identical to what we have proposed here.

Denoting proof in GQ by-cq we have the following.

Lemma 3.1.

1. Atgo A™ and A* -gg A for any A.
I' AFgo B
" T, B Fco A*

Proof:

1. Forthe first assertion apply Ax, ther Rith I empty, then k. Similarly
for the second.
2. Apply Rx, then RE, then k. O

A complete type theory would call for a set of term assignments to go with the
inference rules given above. Needless to say, this seems not to be straightforward
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in the quantum case, and we will postpone a complete treatment until a later paper.
(A certain term assignment is discussed in Section 3.5.)

3.4. Intuitionistic Orthologic and its Translation into GQ

If the formal calculus we have posited above is to properly reflect deductions
in the underlying deductive system it purports to describe, then we should be able to
reproduce this underlying system within the calculus itself. Of course, the best that
we could hope for would be to recover an intuitionistic version of this underlying
system, namely OL.

We obtain an intuitionistic version of OL by discarding the IL invalid axioms,
namely O5 and O6, and adding new ones for the disjunctive connective, since the
De Morgan Law does not hold intuitionistically. We denote these connectives by
the same symbols as before. The rules for the resulting system—which we shall
call IOL—are displayed hereafter.

Axioms

I01. at«a

102. anBlra
I03. an BB
04, ataup
I05. BFaup
106. o~ ~«

Inference Rules
aFpB BEYy
aby
akFB abFy
aFgny
BFa yFa
Buyta

107.
108.

109.

Deduction in IOL will be defined as it is in OL and denotedHyy.

We now attempt to translate IOL formulae into GQ formulae (assuming some
common set of atoms) by reinstating some of the scaffolding used to arrive at the
GQ rules. Specifically, we return to the informal reading Afds the “quantum
set of proofs ofA.” Then we try a translation that is simply the (quantum) Heyting
paradigm applied recursively to the logical operators. That is to sa§,dénotes
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the GQ formula that is the translated version of the IOL formaulaith
a®=a foraatomic, (3.45)

then the Heyting paradigm yields exactly:

(@ B)® =1a’®!B°, (3.46)
(1 B) = 1! BS, (3.47)
(~a)® = (1a®)*. (3.48)

Thus, equation (3.46) in this reading states: the GQ translatiamgf is as
(the quantum set of proofs af) ® (the quantum set of proofs @®). Equation
(3.48) in this reading states: the translation-of is as the annihilator of all proofs
of o€, This is the correct intuitionistic interpretation of falsity: every possible proof
is refuted.

This translation will be recognized immediately by readers conversant with
LL as being almost identical with the Girard embedding of IL into LL. It is worth
noting that the Heyting paradigm in its simple pristine non-quantum form is not
usually invoked to motivate the Girard embedding. However, as we shall see, it
seems to work perfectly and in explicit detail in the quantum case.

Specifically, with the translation rules given above, we have the following:

Theorem 3.4. If a o B thenla® gq BC.

Proof: Before embarking upon the proof, some motivational remarks are in order.
We note first that the presence of the GQ formuflanay be fleeting, whereas the
IOL formula« is static and repeatable. Consequently, to have any expectation that
the deductiorw o 8 may be translatable into a proof in GQ, we should render
the “producer«® repeatable in GQ. Only then may deductions in IOL, which may
require repeated uses @f be done also in GQ: this explains the presence®f !

in the translated version of the deduction.

The proof of the theorem is by induction on the length of a deduction: that
is, the numben of steps in a deductios; s,; . . . ; s, of the sequens,, where the
axioms and inference rules used are those of IOL.

A deduction with one step must be an axiom, and we first prove the theorem
for each axiom in turn.

The proof for (101):

Ole "GQ Ole

For anyw, L!

la® I—GQ «®
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For (102):
For any, M above and W!
1% 1% oot o
W@ Fege® |

!(!Ole@!ﬂe) I—GQ of

or o m B)® Feg ef.

For (103): Similar to (102), but using LE to interchange®!and 8¢ after the
second step.

For (104):
la® Fgola®
u REBl
lo® I—GQ!de@!ﬂe
For (105): Similar, using B-.
For (106):
For anya, (le®)* Foo (la®)* Ll

I(a®)* Feg (le®)*
(la®)™ Faq (1))
!Ole I—GQ (‘('ae)*)*

Lemma 3.1(2)
Lemma 3.1(1) and CUT.

But
(~~a)® = ((~a))
= (I(te®))
which proves the theorem for (106).
The inductive hypothesis faris that the theorem holds for the last sequent in
all IOL deductions of length less tham (The base case has been covered above.)
Consider a deductior;;s; ...; s, of lengthn. If s, is an axiom then we
are done, as above.df is not an axiom, then it follows from a rule of inference
appliedto preceding sequents. Each preceding sequentisitselfthe result of a shorter

deduction, so the theorem holds for each of these, by the induction hypothesis.
We consider each possible rule of inference in turn.

For (107): We suppose tha, is of the forma o ¥ and follows,via (107),
from preceding deductionst o 8 andg o y. Since, as remarked, these latter
deductions are shorter tham the theorem holds for them, namely®!lcq 8¢
and 8¢ g y©. It follows from R! that k® go! 8¢ and then from CUT that
la® L ¥€, so the theorem holds for thss.
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For (108): If s, is of the forma 0 B8 11y and follows,via (108), from prior
deductionsy o 8 anda Fio y, then, as abovegf ! 8 and k® Fgo!y €. So

la® }—GQ!ﬂe la® l—GQ!)/e
la®, la® I—GQ!,BG(@!]/G
la® |—6Q!,Be®!ye

R®
LC

or la® Feo (BMy)®
so the theorem holds for thss.
For (109): If s, is of the formpB U y ko «, etc., then we have
18°Feoa® ly®hgoa®
B!y oo a®
I('B°®!y®) Feq a®

L@
L!

or I(Buy)® Feoa®,
so the theorem holds for thsg.

For (1010): If s, is of the form~g ko ~« and follows,via (1010), from the
shorter deduction o 8, then

!Ole l—(3Q ﬂe RI

1€ | Re
to” Feolh” Lemma 3.1(2)
(B Fog (e |
I(18%)* Fag (')
which is I(~8)° Feqg (~«)® so the theorem holds for thss. O

3.5. A Realization of GQ

The pioneering efforts of J. Lambek (see Lambek & Scott, 1986, and ref-
erences therein)—who demonstrated a perfect correspondence between certain
categories (namely the closed cartesian ones) and certainiypadduli (namely
the A8n-calculi with surjective pairing)—have led to a general appreciation that
certain categories provide good models for certain type theories. In such a model,
the types (or formulae) are interpreted as objects in an appropriate category, and
deductions are interpreted as morphisms going between the appropriate objects.

In the case of our system GQ the choice of category in which to carry out
such an interpretation would be clear on physical and constructive grounds, even
if we had used a different notation: namely, the categ6gyof finite dimensional
complex Hilbert spaces. To carry out this interpretation, we need to specify, for
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each unnamed atomic GQ formula, a corresponding objeftinSupposing this

to be done, we then obtain for each GQ formélan object of# merely by
interpreting the occurrences @f, @, ( )* in A as carrying their usual meaning in
the categon@g, the asterisk denoting the dual space of linear functionals. (We
note that in functional analytic contexts a Hilbert space is customarily identified
with its dual spaceia a correspondence that does not lie in the categfarybeing
conjugate linear. In categorical contexts—and also in some physical ones—it is
advisable to maintain this distinction.)

We could now proceed informally by considering GQ formulae to be finite
dimensional Hilbert spaces, and, leaving aside for a moment the interpretation
of the operator !, we could replace each comma in a nonempty seqgliebge
® and each empty sequence By GQ sequentsA -gg B are then interpreted
inductively as elements of HomA( B) according to the interpretations specified
for the inference rules. For instano®f-go A (Ax) shall be interpreted as (or by)
the identity map A € Hom(A, A): the other rules hold in the catego#s and
linear maps may be built up which interpret GQ proofs in an obvious way. Thus,
for example, in the case of CUT, if we have a proof interpreted as an element of
Hom(l, A)=T'* ® A and a proof interpreted as an element of

HomA®TI', D)= (AQI)*® D = A*® (I')* ® D,
then the tensor product of these two elements lies in
Mo A A*® (I')* ® D.

The A® A* component may now be contracted (small c!) to yield an element in
(FeI")*® D. We specify this element as the interpretatior#ip of the proof

I, I go D given by the CUT rule applied to the original proofs. The other rules

not involving ! can be treated similarly, using the properties of the connectives in
¥k, an exercise we leave to the interested reader.

Now we turn to the question of how to modél for a given finite dimensional
Hilbert spaceA. To do this we shall take seriously the earlier wishful interpretation
of 1 A as the “quantum set of proofs éf” Recall that the latticd. (A) constitutes
a model of OL and equivalence classes of OL deduction®\ ah the model
L(A) correspond with subspaces Af by Theorem 3.1. These subspaces can be
organized into a “quantum set,” namely the exterior algébfd)—the quantum
version of the set of subsets of the “s@t—which is an object if¥r : this is exactly
the substance of the extensorial calculus of quantum sets. We shall digress to give a
very brief account of this notion, referring to Finkelstein (1996), Selesnick (1998)
and their references for fuller accounts.

Suppose we have a linear ma@/ — C, whereW is a vector space ar@ is
an associative algebra, having the property that for ewesyW,

l(w)? = 0. (3.49)
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Then there is a universal object satisfying this property. That is to say, for ev-
ery vector spacdV, there exists an associative algelir@V) and a linear map
W — E(W) satisfying equation (3.49), such that for any other linear map
I:W — C into an algebra satisfying equation (3.49), there exists a unique algebra
mapl:E(W) — C such that =1 o «. The algebr&E(W) is unique up to appropri-
ately commuting algebra isomorphisms. It is called éRterior algebraover W

and one instantiation of it is given by the antisymmetric, or fermion, Fock space,
namely

E(W) = é/\kw
k=0

=COWasWAWG - (3.50)

HereA denotes the usual exterior produbtW = C andA'W = W, ¢ is inclusion
of W as theA'-summand, and multiplication of homogeneous terms is.higg
them together.

In this case, ilW is finite dimensional, of dimensiam say, since

dimA*W = (E) (3.51)

the series in equation (3.50) terminate& atn, and dimE(W) =2".
We note afurther property of the exterior algebra which will be of significance
later, namely, for finite dimensional vector spateandW the linear map

A"V @ A"W — ATV @ W) (3.52)
given in an obvious notation by
(VIA- - AVR) @ (WL A+ AWp) > VI A+ AV AWL A--- AW, (3.53)

induces an isomorphism

p
APV e W) = PHAV oA w (3.54)
k=0

whence an isomorphism of vector spaces (not algebras)
E(VeW) = ENV)® E(W) (3.55)

(cf. Fulton & Harris, 1991, Appendix B; Lang, 1993)W is a Hilbert spacei (W)

may be given a Hilbert structure and is universal in the appropriate category.
Finkelstein seems to have been the first to recognize and address the follow-

ing problem. Ordinary quantum logic fails to take accounegtiensionality In

the standard interpretation, quantum logipeddicates(which would determine

classes as the@xtensiondn naive classical set theory) correspondtojections

or equivalentlyclosed subspaces a Hilbert space, bugetsof quanta apparently
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do not. Thus there is an asymmetry between quarassegi.e., quantum pred-
icates, or closed subspaces of a Hilbert space) and quasstafnepresented by
rays, not in the original space, but in the fermion Fock space (or exterior algebra)
based upon it. This asymmetry is absent inngaafinitary) classical set theory,
where every class is a set. In considering higher order set-theoretic constructs,
such as sets of sets, there arises a concomitant problem: standard quantum logic is
necessarily only first order, dealing with predicates, but not with predicates whose
subjects are predicates, etc. Finkelstein’s suggestion to restore extensionality (in
the case of finite dimensions) is to replace the relevant Hilbert space with its ex-
terior algebra, and to regard the rays determined by its homogeneous (or simple)
elements as representing tigantum setsorresponding to the subspace spanned
by those elements. This correspondence goes back to Grassmann: specifically,
choose a subspace, @ say, spanned by vectofsy, ..., v}. If another basis
{wg, ..., wy} were chosen, them; A --- AWg=AVy A - -+ A Vg, Wherei denotes
the determinant of the linear transformation induced by the basis change. Thus,
subspaces ofV correspond bijectively with rays of homogeneous elements in
E(W), and (finite) extensional symmetry is now restored to quantum logic.
Following Finkelstein, our next observation concerns the map— E(W).
This map interprets an elememtc W as a (quantum) sefa) in E(W), which
is the analog of the classical qet}. (This explains the iota, which was Peano’s
notation for the “unitizing” operation upon set®A= {A}.) Sincet is linear, the
ray determined by is sent to the ray determined b{y). (They ray determined
by @ corresponds to a quantupredicate(or clasg, so the ray determined be),
is a quantunset now interpretable, as in ordinary set theory, asakiensiorof
a certain predicataboutthe predicate correspondingdo namely, the predicate
“being «,” roughly speaking.) Moreover, we note that the fayappearing as the
first summand irE (W) represents the empty set @—this follows from our original
construction. It is the extension of no quantum predicate. The last nonvanishing
component of the exterior product, namely the one-dimensional ép&ewhere
n is the dimension oV, represents the whole “quantum sgY.
Any homogeneous elemerftri) A - - - A (o), say, iNE(W) is a quantum
analog of the (disjoint) uniofwy} U - - - U {ay} = {1, . . ., ak}, but superpositions
are allowed, which of course have no classical counterpart. InEf¢¥) contains
a version of classical set theory—a realization which was not lost on Grassmann
and some of his followers.
The exterior algebra of a vector (or Hilbert) space has another property of
particular interest in the present context, namely, it is a coalgebra, with coproduct
Yw:E(W) —> E(W) ® E(W) given by

Yww) =1@w+we®1l (3.56)

and counit given by projection upon the first component in (3.50). (We note that
Yw is an algebra map if the product &(W) ® E(W) is taken to be thgraded
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product, given by
(a® b)(c ® d) = (—1)%909e6) (3¢ @ bd) (3.57)

where the degree defjf of an homogeneous elemehits the power of the exterior
product it belongs to.)

With this coalgebra structure it is not hard to show that the isomorphism
(3.55) is in fact an isomorphism of coalgebras.

Now it turns out that this interpretation of the exterior algebra as the quantum
set of “proofs” or subspaces of a given space, works perfectly as a model of !;
namely,

LW: Consider the counita:E(A) — C, given by projection upon the'Ograde
component oE(A). Then an interpretation of a probft-ggo D—lggmely, an ele-
ment of Hom(", D)—may be composed with the m&pp E(A) —' ' C=T

to obtain an element in Hom(® E(A), D). This element is declared to be the

interpretation of the proof obtaineda LW of the original proof.

LC: A similar argument using the coprodu&i(A) LN E(A) ® E(A) (equation
(3.56)). We shall discuss the interpretation of this rule in a little more detail since it
embodies the important notion of quantum copying-doplication—of storage
capable quantum resources.

For the purposes of this discussion let us introduce label®(org for GQ
sequents. Thus, a sequéht- D may be labelled on the leftas inI" - D. (This
is equivalent to the notationally more standard expressidr™* ® D.) Rules
should now be introduced for the correct formation of terms as GQ proofs are con-
structed. We shall illustrate only a single short proof, in which these assignments
are self-evident: namely

f:!AI—GQB g:!AI—GQC

(f,g) !A 'Atgo B®C
dup,A(f, 9) !AFgeB®C

R®
LC

Read operationallydup, 5{ f, ) labels the deduction obtained by “quantum
duplicating” the storage capable resouréeih the preceding sequent, and then
performing the deduction labelled kyf, g). When interpreted i, f andg
may be regarded as the appropriate linear maps, and we have

(f, g) isinterpreted as ® g
and
dup,5(f, g)is interpreted ad ® g o Ya. (3.58)

L!: A similar argument using the projectidf(A) — A upon first grade elements.
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R!: It suffices to show this fof" containing at most a single formula, since, if
F=A, A ..., Ay, IT is interpreted asAi1®!A; ® - - - Q! A, which is isomor-
phic as a coalgebra withA; & Ao @ - - - ® Ay) (equation (3.55)). Therm!— A

is interpreted as a map(I") — A. Dualizing this we obtain a mag* — E(I")* =
E(I'*). Fromthe universal property &f( ) this map lifts to a majg (A*) — E(T'*),
and, dualizing again, we obtain a mBgI') — E(A). This is the interpretation of
IT I Ain the conclusion of R!.

All of this could be done much more formally, with little gain in transparency
as far as our endeavors in this work are concerned. That the category of finite
dimensional vector spaces models full LL, with taken to beE (A*)*, was shown
in Bluteet al. (1993). See also Seely (1989) for a clear discussion of more general
categorical interpretations of LL.

We conclude this section with the following remarks:

¢ We have shown that, by means of the translation Egs. (3.45)—(3.48) and
the interpretation described above, IOL may be realized within the familiar
category¥r viaa literal use of a quantum version of the Heyting paradigm.
Moreover, the logic offfr, as specified by the rules of GQ, is seen to be
an externalization of the intuitionistic fragment of the logic of each of its
object’s “inner” subspace-lattice models of OL.

e The correct notion of (intuitionistic) “quantum” implication is now seen to
be interpretable in terms of morphismsiffy ; that is, in terms of ordinary
linear transformations between the underlying vector spaces, all of which
are necessarily continuous for any chosen inner products.

e These logical considerations have thrown up a formal specification of the
notion ofstorage capable quantum resour&ich resources would be fun-
damental to any “quantum computational” endeavor, and the exploration
of this notion in one form or another will occupy us for the remainder of
this note and certain sequels to it.

4. QUANTUM COMPUTATION
4.1. A Model of Quantum Computation and the Emergence of the Qubit

The system GQ is empty of physical content, embodying, rather, minimal
rules for making certain deductions about abstract quantum “resources.” The task
before us is to supply physical input in the form of additional axioms (and, in
subsequent papers, additional rules pertaining to the “post-processing” of certain
ensuing deductions). A system obtained by adding axioms to an existing system
(suchas GQ)is called by logiciandeory(or a GQtheory). (Often, extratechnical
constraints are put upon these added axioms to ensure desirable deductive behavior,
but we shall not so constrain our (few) axioms here.)
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Specifically, in this note, we shall add a single IOL axiom meant to simulate
a single “time”"-stepped deduction or computation which preserves each type.
Here we consider “time”-steps to be resources—necessarily constrained by our
formalismto be “quantum” resources—which are produced to accompany, or label,
such a transformation. This may be expressed in the static, resource insensitive
language of IOL by the axiom

o |—|ot|_|0l. (41)

Herex is any IOL formula, and is an atom. This is meant to capture the idea that
«a (re)produces to the accompaniment (or production) of a single time-step, time-
guantum, or clock-tick. It is a crude attempt to force some preconceived notion of
“time” upon the logicakabula rasa

The translation of this into GQ then yields the axiom to be added to GQ,
namely

lo® |—(3Q!t®!0le, (4.2)
or, equivalently (in view of ks, LE, and R):
()" Foo (la®) ®!a®. 4.3)

Thus, the axiom amounts to the specification of a deduction froyh to
('a®)* ® la® for eacha.

When realized in the catego#¥g, the interpretation oftlis somewhat prob-
lematical, but, whatever interpretation is given todif, will be interpreted as a
finite dimensional Hilbert spacky say, of dimensiom, say, and ¢°)* ® !«® will
be interpreted as

E(W)* ® E(W) = EndE(W).
In view of equation (3.55) we have
E(W) = E(@"C)
= Q"E(C) (4.4)

where E(C) =C @ C, the two-dimensional Hilbert space. This space, ithe
ducible quantum storage capable uinif/r, has come to be called (in the quantum
computing literature) thgubit In view of Finkelstein’s Grassmannian interpre-
tation of the functorE( ), the firstC represents the empty quantum set (or the
zero subspace df), while the second represents the subspaCeof C, or the

whole quantum set. If quantum superpositions were suppressed, we would have
discovered the ordinary classical bit. Note that bit-based notions were not explicit
in any of the considerations leading up to QG. Thus, the classical bit emerges,
quite appropriately, as a classical degeneration of the spontaneously arising qubit:
guantum notions should indeed underlie classical ones.
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Equation (4.3) thus characterizes a “quantum computation,” taking place in
some version of “quantum time,” as a map from a representer of the dual of the
multiplexed quantum time-step resoutcenamely (t)*, to a space of the form
End®@"$H®?), whereH™ denotes a Hilbert space of dimensioig< co); that is:
the annihilators or absorbers of finite quantum sets of time-steps are mapped to
endomorphisms of tensor products of qubits.

The problem here is that the formalism seems to have worked too well in that
“time” is also necessarily finitely or constructively quantized when forced into
the picture, whereas the exigencies of macroscopic existence might require us to
adopt a model of time that is infinite and classical. In order to attempt to redress
this problem, and arrive at the standard notion of a quantum computation, we will
need to step outside the categorical confine¥ pf This will be done in Section
4.3. First, we are required to interpret rather more fully the notion of quantum
duplication.

4.2. Quantum Duplication as Entanglement

As we have noted, the general storage capable objeitis of the form
E@™) = @" $@: suchatensor product of qubits has come to be caligatum
register.

The quantum duplication operatdhat interprets the GQ Contraction rule,
namely

5™ 19™ r D
9™ r-p

(4.5)

is the coproducE(H™) — E(©™) ® E(©™). Moreover, in light of the coalge-

bra isomorphism equation (3.55), which now reﬁ(g)(“)) = Q" 32)(2), it will be
sufficient for our purposes to discuss the quantum duplication operator for the case
of a single qubitH®.

At this point there arises an unfortunate clash of notations. When the qubit
is realized as the coalgebB(C) =C & C, the first component is generated by
the unit of this algebra which is usually denoted by 1, and, since the coproduct
¥:E(C) —» E(C) ® E(C) preserves units, we have

y1) =191 (4.6)
For an element of the otherC component we have (cf. equation (3.56))
Y(X)=1®x+x® L (4.7)

In the quantum computational context, a bd4isx} of the qubit would be
written, when normalized, g3$0), |1)}: as noted, the first element corresponds to
the empty quantum set and the second to the whole quantum set. The duplication
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operations expressed by the above equations become
¥(10)) = 10) ® 10) (4.8)
¥(11) =10)® 1) + 1) ® |0) (4.9)

relative to the chosen so-calledmputational basi§|0), |1)}.

Thus, quantum duplication applied to the “off” computational basis element
|0) produces a simple homogeneous pure state of the combined 3&@9@1&5(2),
whereas duplication applied to the “on” basis element emphatically does not. In-
deed, the state corresponding to the right hand side of equation (4r@pisimally
entangledstate.

The duplication magr applied to any vector isj>(2) will be a linear combina-
tion of the right hand sides of equations (4.8) and (4.9), and one of the upshots of our
logical machinations is that quantum duplication, namely, that quantum process
which corresponds to the classical possibility of freely copying a resoomast
in general entail quantum entanglement. This is borne out in the standard theory
of quantum computing, where quantum entanglement has been recognized as a
fundamental resource and must be used in subtle ways, for instance to implement
the transmission of quantum states by “teleportationi/attempts to copy such
states would be confounded in view of the so-called “No Cloning” Theorem (see
for example, Hirvensalo, 2001; Nielsen & Chuang, 2000).

It seems rather remarkable that “merely” logical considerations have led di-
rectly to this subtlety regarding quantum duplication.

4.3. Quantum Computing in Classical Time

We will extend the interpretation of coproducts as quantum duplicati@n-
entanglement to other coalgebras in an attempt to interpret our axiom (4.3) with
the multiplexed time-step typé how interpreted “classically.”

To render classical the typewe need to interpret it in classical terms. This
can be done by modelling! not by the exterior algebra but by the free commutative
algebra generated by the space in question. In our case, this may be viewed as the
bosonic Fock space of the one-dimensional Hilbert space, which may be identified
with the one-dimensional affine algebraic grdcip]: this is just the usual complex
polynomial algebra in the indeterminateequipped with the bialgebra structure
described as follows. The coprodugtC[t] — C[t] ® C[t] is that algebra map
determined by

yt)=1t+t®1 (4.10)

and the counit is given bg(t) =0. Since it is only time that is being treated
classically here, we maintain the quantum interpretation of ! in the other parts of
axiom (4.3).
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Thus, we are required to specify a map
¢ : Clt]* — End(@" H?). (4.11)

We shall make two assumptions concerning this map which together will
yield the Schibdinger optionfor describing the classically timed dynamics of a
guantum register. The first of these concerns the notion of duplicatiomuEreum
duplication of a resource corresponds to the classical operation of copying or
repeating the resource. Our first requirementgois that it should respect this
type of repetitive behavior: in other wordg, should be required to match the
repetitive behavior of the resource “time” to that of the target resource—a sort of
synchronization assumption. Thysis required taespect quantum duplication:
for f, g € C[t]*, we should have

¢(dupcpy(f, 9) = dupgngens@) (@(T), ¢(9)) (4.12)
or, from equation (3.58),
p(f ®gova) =o(f) ®¢(g) o Ve, (4.13)

whereyr andy e denote the coproducts respectivelyijt] and End (g>”5;§(2)). The
latter coproductis the dual of the algebra product on the space of endormoviasms
its canonical self-duality. (FAWV finite dimensional we have ERNd= W* @ W =

(W ® W*)* = (Endw*.)

Equation (4.13) is exactly the requirement thidbe an algebra map for the
algebra structures dual to the respective coalgebra structures. The dual algebra
product on End®“s§>(2)) is, by design, just the usual one, while the commutative
algebra product oft[t]* is easily described.

First, we denote by, the element irC[t]* dual to the basis elemetit of
the vector spac€[t], m=0, 1,..., so that

Sm(t") = Smn, (4.14)
wheredm n denotes the usual Kronecker delta. Then elementS[gf may be

conveniently written as formal sums of the folc,s,.

Proposition 4.1. The commutative algebra product, denotednduced upon
C[t]* by the dual of the coproduat of the Hopf algebra([t] is given by

m-+n
dm * On =< m )8m+n

_ (m+n)!

T dmn. (4.15)

Proof: Foranym, n, k
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(8m * 8n)(t*) = (5m ® 8n) (¥ (1))

= (6m ® S (W (1))
=0BmR&)(LRt+t® 1K

=(8m®8n)(;)<ll(>tl ®tk')

= l;) ('r)sm,.an,k_.. (4.16)

This sum can be non-zero onlyrif+ n =k, and, when this is the case, the single
surviving term occurs whem =1.
Thus,

(B * 80)(t4) = (mnt ”)6m+n,k

= ((m;n>5m+n)(tk).

(4.17)
O
It follows immediately from equation (4.15) that

min!

m+n = msm * 8“! (418)
so that, fom > 0,

8n

(4.19)
Thus, general elements @ft]* may be expressed in the form
C
> n—”!a;‘ (4.20)
and¢, being an algebra map, will be specified o8, ) is assigned.
Now, it is classical that the set of algebra morphisms kg(€[t], C), of

C[t] into C, with product operation inherited from the algebra productftj*,
may be identified with the additive group 6f This identification is obtained by
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noting that every element of Hag (C[t], C) is given by
h,(t") = 2", (4.21)

for somez e C. That the associatidm, — zis a group morphism is immediate (cf.
Abe, 1977, Ch. 4).
Theseh, may be written (for eack e C) in the form

h, = 80+ 281 + 2%62 + 2263+ - - -
2 3

z z
=80+ 28+ zaf + aaf 4+ (4.22)
from equation (4.19). Thus we obtain a map
C — End(@" $%?) (4.23)
given formally by
2
ZH¢mg=|+zm&y+§¢@f+-n, (4.24)

sincedg is the unit forsx.
Supposing time to be real, we restrict to the additive subgws C to
obtain the map

E - End(@" 9?) (4.25)

given by t— expi$(s1)). Though defined formally, this series will always
converge.

The second Schdinger-like assumption af concerns the interpretation of
81. The logical atont was introduced to represent the notional generic “time-
step.” Let us now take it more literally to represent the generic infinitesimal time
differentialdt. Then, its linear dual; should be interpreted as the duabttfwhich
is the tangend/dt. As an operator, densely defined ugoifR), it has the property

that
3\ 9
—) =2 4.26
(%) == (426

where the dagger denotes the Hilbert space adjoint.
Our second assumption af is that it should be chosen to preserve this
(virtual) property ofs;; that is,

$(3)" = —p(51). (4.27)
Then we may choose
¢(81) = —iH (4.28)

for some Hermitian matritd .
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Thus, the map realizing the action of time (or, rather, the action of time
intervalg that constitutes a “quantum computation” may be written in the form
t — e 11t (The physical interpretation ¢ is, up to an additive real constant, as
the operator Hamiltonian of the system.)

Despite its formality, this model seems to have revealed the major qualitative
aspects of those processes called quantum computations. To wit

¢ the unitarity and time reversibility of the processes;

e the structure of the underlying Hilbert space as a quantum register, or tensor
product of qubits;

¢ the primary ole of quantum entanglement as a resource in the implemen-
tation of quantum duplication.

We note also that the unitarity of the action of the dynamical operator entails
the preservation, through the computation, of the associated Kripke orthomodel
and subspace lattice structures.

We have arrived at the point at which the current treatments of the embryonic
theory of quantum computation start, and interested readers could consult the vast
and burgeoning list of works devoted to this fascinating subject. In subsequent
work we will return to the problem of term assignments for GQ, and possible
applications of the theory.

Questions for further consideration include the following:

1. Are there lattice characterizations of IOL? Such lattices might stand in
relation to ortholattices as Heyting algebras do to Boolean algebras.

2. Does the translation theorem (Theorem 3.4) have a converse?

3. Is CUT eliminable from proofs in GQ?

4. Do other categories exist in which GQ is realizable?
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