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In this paper we introduce a minimal formal intuitionistic propositional Gentzen sequent
calculus for handling quantum types, quantum “storage” being introduced syntactically
along the lines of Girard’sof courseoperator !. The intuitionistic fragment of orthologic
is found to be translatable into this calculus by means of a quantum version of the Heyting
paradigm. When realized in the category of finite dimensional Hilbert spaces, the famil-
iarqubitarises spontaneously as the irreducible storage capable quantum computational
unit, and the necessary involvement of quantum entanglement in the “quantum duplica-
tion” process is plainly and explicitly visible. Quantum “computation” is modelled by
a single extra axiom, and reproduces the standard notion when interpreted in a larger
category.
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1. INTRODUCTION

Quantum computers effect computations by exploiting the subtle laws of
quantum physics: a profound qualitative shift from classical computational
paradigms. Quanta are not objects in the ordinary sense, and their manipulation is
not mechanistic in the sense that the movements of beads, pebbles, cog-wheels,
chalk, or graphite particles—or even currents within a solid-state device—are. Al-
though ordinary computers use small components whose size begins to encroach
upon the domain where quantum effects may have a bearing on their physical
behavior, their operationsquacomputational elements—implementing as they do
Boolean operations upon arrays of notional bits—are entirely classical.

Indeed, it is perfectly clear that ordinary “classical” computational devices
(knotted cords, slide rules, Macintoshes,. . .) require for their use (or program-
ming) no knowledge of the physical laws underlying their operations as physical
entities existing in the world. Of course, these devices operate according to the
laws of physics but these laws are notthemselvesexploited in the course of such an
operation or computation: it is not necessary—and would be absurd—to preface
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the definition of a Turing machine, say, with a summary of the laws of classical
physics. The same (classical) computation could, in principle, be performed by
any sufficiently complex device, regardless of the nature of its physical instanti-
ation. In this sense, the notion of a “classical” computation seems more abstract
than the quantum notion since the underlying physics has been abstracted away in
the classical case, whereas it seems to be part and parcel of the current quantum
computational paradigm.

This circumstance has the appearance of necessity, since, as macroscopic
experimenters, we have come upon the quantum domain only recently, and our
apprehension of it depends upon delicate and complicated instrumental interfaces.
In consequence, the foundations of current quantum computational theory have
both an ad hoc and a post hoc appearance, conditioned as they are by classical
thinking about computation and additionally encumbered by the interpretative
burdens of standard quantum theory. For example, all quantum computational
considerations spring from an assumption about the nature of the basic quantum
computational unit. This is universally accepted to be what is now referred to as
the qubit:namely an idealized quantum system having a two-dimensional Hilbert
space of states. This is, obviously, the quantized version of the two-state classical
computational unit known as the bit, the basic Boolean logical unit. In attempting
to provide alogical foundation for a theory of quantum computation the argument
that the qubit should be taken as the fundamental unitbecauseit is the quantization
of the classical Boolean bit is clearly Whiggish. If quantal things underlie classical
things, then the bit should appear in the macrocosmbecauseit is the degenerate
macroscopic limit of the more fundamental qubit, and notvice versa. Thus, one
should seek amorefundamental theory of quantum computation that yields up the
qubit as the basic quantum computational unit without explicit recourse to specific
classical prototypes.

The student of “quantum computing” is indeed faced with a daunting task,
as Hirvensalo (2001) notes: an understanding of the fundamentals of the two most
notoriously counterintuitive disciplines known to Mankind—namely quantum the-
ory and the theory of computation—must be gained at the outset. Moreover, it is
exactly themostcounter intuitive aspects of quantum theory, which lie at the heart
of the current quantum computational ideal.

No such epistemological hurdles obstruct the path to an understanding of
theories of classical computation, as we have noted. In this paper and its sequels
we attempt to redress this asymmetry; that is to say, we attempt to lay a foundation
for an abstract theory of quantum computing from the bottom up, the bottom being
a certain variant of standard quantum logic. At the foundational level, the theory
is essentially independent of physical considerations, except insofar as these are
already present in the axioms of quantum logic.

The layout of the paper is as follows: Section 2 consists of a minimal intro-
duction to those elements of standard nonquantum natural deduction and proof
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theory that will be extended to the quantum case in Section 3. The latter section
contains a brief overview of those parts of quantum logic that will be relevant in
the attempt to construct a minimal calculus for managing quantum “resources.” It
becomes apparent from these considerations that the classical Heyting paradigm
fails in the quantum case.

In Section 3.3 we introduce a purely syntactic minimal intuitionistic Gentzen
sequent calculus based upon presumed properties of quantum types, orresources,
and show (Section 3.4) that a translation of the intuitionistic fragment of orthologic
into this calculus may be affected simply by invoking aquantumversion of the
Heyting paradigm. The calculus is then interpreted in the category of finite dimen-
sional Hilbert spaces, with the aid of Grassmannian quantum set theory (Section
3.5).

In Section 4.1 we specify a one-step “quantum computation” purely syntac-
tically in the sequent calculus through the introduction of a single extra axiom.
When this axiom is realized in the category of finite dimensional Hilbert spaces,
the familiarqubitarises spontaneously as the irreducible storage capable quantum
computational unit.

The notion of quantum storage, accompanied by the concomitant dual notion
of quantum copying or duplication, emerges directly from a consideration of the
rule of Contraction as it is realized in our sequent calculus, and the need to invoke
quantum entanglement in the course of implementing it is immediately apparent.
This is discussed briefly in Section 4.2.

In Section 4.3 we subvert our constructivist quantum principles in an attempt
to accommodate classical time as the multiplexed storage capable version of the
symbolic time quantum, or step, used in the newly added axiom. Although they are
rather formal, these maneuvers reproduce (in a fairly natural manner) the standard
picture of a quantum computation as being a one-parameter unitary dynamical
group acting in the Schr¨odinger manner upon a tensor product of qubits.

2. CLASSICAL COMPUTATIONAL PARADIGMS

2.1. Natural Deduction

The irreducible essence of any kind of computation is the act of reducing
an expression to another expression according to an agreed upon set of rules. A
prescribed set ofatomicexpressions, together with a set of rules for manipulating
or rewriting them, comprises the backbone of what is known as adeductive system.
The study of such systems has come to occupy a significant sector of the modern
theory of computation.

A deduction(or derivation) in such a system is a sequence of rule-based
replacements (or rewrites) of expressions starting from a set specified asaxioms.
One may view such a deduction geometrically in various ways: as tree-like, for
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example, with axioms as leaves and the concluding expression as the root. Although
we have been vague about the nature of the “expressions” involved, it should
already be clear that a deduction is very much like a (computer) program, which
proceeds in steps to reconfigure patterns of data.

The expressions of interest are, of course, those to be found at the roots of
deductions and it is important to remark on the obvious fact that these are produced
by entirelyconstructiveprocesses. A derived expression may be specified—in the
sense that it may beconstructed—from the axioms together with the particular
deduction tree at whose root it sits. Clearly, this association (of derived expression
with deduction tree) is not one-to-one, since a given expression may have many
deductions (or, indeed, none). From a constructivist viewpoint it would be better
to associate a derived expression with thesetof deductions leading to it. This kind
of association lies at the heart of Heyting’s interpretation of intuitionistic logic as
that logic which arises from a wholesale adherence to constructivist principles (cf.
Section 2.2).

Insofar as we deal with logic per se in this paper we shall deal only with
propositionallogic: that is, we ignore quantification (∀, ∃) entirely. However, there
is no doubt that a full treatment along the lines to be advocated in this work should
include quantification (cf. Finkelstein, 1996).

In this section we informally explore some of the issues associated with deduc-
tion by examining a certain system known asnatural deduction. Specifically, we
shall discuss the natural deduction system for minimal implicational intuitionistic
(propositional) logic. This treatment combines elements from the early chapters
of both Girardet al. (1988) and Troelstra and Schwichtenberg (2000).

The basic object of interest in this system is adeductionof a formula (or
sentence) A, say, which, after Girardet al. (1988), we shall denote by

...
A

(2.1)

The dots stand for subdeductions, and the whole structure is to be regarded as a
finite tree, or at least as being tree-like, since the tree structure will soon be vitiated.

The first rule of deduction, orinference, is that a single formula by itself is
a deduction (of itself). Strictly speaking, this axiom should be asserted only for
a set ofatomicformulae: the result then follows for all formulae. We will follow
custom in this abbreviated overview by omitting the complication of specifying
the atoms at this stage.

There are two other rules of inference, which enable new deductions to be
constructed from old ones. One ruleintroducesthe implication sign⇒ and the
other ruleeliminatesit. The expression of these rules requires some notational
preliminaries. SupposeA appears in asingle top node (orleaf) of a deduction
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whoseconclusionis B. Then we may unambiguously write

A...
B

(2.2)

In this case, the rule of introduction posits a new deduction:

A...
B

A⇒ B
⇒ I

(2.3)

(Here, the⇒I labels the rule being used—namely “⇒ introduction”—to extend
the tree: it is frequently dropped when ambiguity does not threaten.)

The occurrenceof A is said to beopen(or live) in (2.2) but considered to
beclosed(or killed, or discharged) by the application of⇒I in (2.3). The open
occurrences of a formula likeA in (2.3) are said to behypothesesfor the deduction.

Now, A may appear and be open in other places, for instance in ambient
deductions, and in this case we would wish to keep track of which open occurrence
of A is being discharged at the⇒I inference. This can be accomplished by labelling
A and then invoking the label at the point of inference. Thus, in place of (2.3) we
now write

Au
...

B

A⇒ B
u,⇒ I

(2.4)

As noted, it is possible that open occurrences ofA may appear a number of
times in the deduction leading toB, and we may choose to discharge a collection
of these at the inference. The deductions leading to those occurrences ofA in the
chosen collection are all then discarded simultaneously at the inference. Members
of such a collection may be grouped under a single label, since there is no need to
distinguish among these discarded deductions. The notation for such a collection
of open occurrences ofA is [A]u. Of course, there may be other collections of open
occurrences ofA that are not chosen for discharge at the inference: these remain
open after it.

The complete statement of the⇒I rule now reads

[ A]u
...

B

A⇒ B
u,⇒ I

(2.5)
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(Here the degenerate case of [A]u being empty is allowed. This empty case would
still require a label at the inference. Thus,

B

A⇒ B
v (2.6)

is a legal deduction. Thev labels the empty class of occurrences, which is dis-
charged at the inference.)

There is some linguistic awkwardness in referring to [A] since it denotes a
pattern ofoccurrencesof the formulaA and is not, strictly speaking, aset.

The other rule of inference in this system, which is a rule for eliminating⇒,
is justmodus ponens, and may be rendered as

...
...

A A⇒ B

B
⇒ E

(2.7)

Here, two deductions—ofA and A⇒ B—are combined to produce a new de-
duction with conclusionB. The hypotheses of the two subdeductions above the
inference line, taken together, are the hypotheses of the new deduction (2.7).

(There are natural ways to simplify certain deductions. For instance, a deduc-
tion of the form

[ A]u
......

A
B

A⇒B u

B

(2.8)

may be replaced by the following simpler direct deduction, considered to be equiv-
alent to it:

...
[ A]

...
B

(2.9)

The understanding here is that each (discharged) occurrence ofA in [ A]u (in (2.8))
has been replaced by a copy of the new deduction ofA introduced on the left (in
(2.8)).)

2.2. Heyting Paradigm and Curry–Howard Isomorphism

The constructive notion of implication introduced in the preceding text is not
the ordinary implication of ordinary propositional calculus (PC), about which we
will have more to say in Section 3. Rather, it should be interpreted intuitionistically
in light of the so-calledHeyting paradigm(Heyting, 1956), which gives a semantics
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for formal intuitionistic logic (IL) (cf. Troelstra and Schwichtenberg (2000, Section
2.5.1, p.55), where the attribution also includes Brouwer and Kolmogorov). In this
interpretation of IL, a formula is intuitionisticallyvalid only if a deduction can
be explicitly presented or constructed. The interpretation ofA⇒ B in (2.4) then
becomes—if a deduction ofAu can be constructed then a deduction ofB can
be constructed,via the deduction above the inference line in (2.4). After this
encapsulation of the whole process in the formulaA⇒ B, the open assumption
Au is no longer needed and may be discharged (or closed), the deduction leading
to it being, in a sense, discarded.

In the previous section labels were introduced merely to keep track of the
flow of closings of collections of open formulae as the⇒I inference is enacted.
(As Girard et al. (1988) observes the link this labelling scheme sets up between
formula and inference point effectively destroys the illusion of a tree-like structure.)
The significance of this apparently innocent labelling scheme may be realized by
another appeal to the Heyting paradigm. Since, in this interpretation of IL a formula
is intuitionisticallyvalid only if a deduction of it can be produced, a formula may
beidentifiedwith its set of deductions. In more formal terms, a formula determines
a type, A say, and a labelu of A is considered to be avariableof type A, for which
the standard notation isu:A. (Formal definitions of types, terms, variables, etc.,
may be found in the works cited in the preceding text. For our purposes in this note
the informal intuitive notion of a type as being a special kind of set, while variables
refer to elements of such sets, etc., will suffice.) Returning to the labelling scheme
of the last section, we note that the labelu in Au could be regarded as standing in
for a generic deduction ofA: it is in fact not merelyA that is being labelled but a
deduction ofA. In view of the Heyting interpretation,Au can be rewritten asu:A.
Similarly, theu in [ A]u stands in for generic deductions of the occurrences ofA
in the collection [A], which are all “discarded” simultaneously at the inference.
Consequently, [A]u can be rewritten as [u:A].

Now that u is being regarded as a variable of typeA, this status should
be recorded at the point of inference in (2.5). Likewise, the variable of typeB
corresponding to the deduction ofB, which appears above the inference line in
(2.5), and which “depends” upon the deduction ofA labelled byu, should also be
explicitly annotated. Then, (2.5) may be rewritten as

[u:A]
...

[t :B]

λu.t :A→ B

(2.10)

Here, the symbolλ serves tobind u within t . The typeA→ B is the indicated
“function” type, which, in terms of sets, is the set offunctionsfrom A into B. As
noted in the last section, the Heyting paradigm interprets intuitionistic implication
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A⇒ B as a function from the set of deductions of the formulaA to the set of
deductions of the formulaB.

The expressionλu.t is the name of the function (of typeA→ B) that produces
t upon the “input” ofu.

Note also that the binding ofu within t via the symbolλ in the expression
λu.t recapitulatesexactlythe discharging of the associated formula occurrences.

Similarly, the inference rule (2.7), which eliminates⇒, may be rewritten in
type theoretic terms as

...
...

s:A t:A→ B

ts:B

(2.11)

wherets denotesapplicationof the function typet to s.
Using these translations of the inference rules, any deduction may be used to

generate a “λ-term,” which completely describes, or encapsulates, the deduction.
For example, consider the pattern of discharges in the following two deductions
of A⇒ (A⇒ A) (from Troelstra & Schwichtenberg, 2000, p. 25):

Aw

Au

A⇒ A
v

A

A⇒ A
u

A⇒ (A⇒ A)
w

Aw

Au

A⇒ A
u

A

A⇒ A
w

A⇒ (A⇒ A)
v

(2.12)

(cf. (2.6) for the labelv in both cases.) An application of the translation rules given
above to the left-most deduction in (2.12) yields

u:A

w:A λv.u:A→ A
(λv.u)w:A

λu.(λv.u)w:A→ A
λw.(λu.(λv.u)w):A→ (A→ A)

(2.13)

The reader may check that the the translation of the right-most deduction in (2.12)
yields the nonequivalentλ-term:

λv.(λw.(λu.u)w):A→ (A→ A). (2.14)

The calculus ofλ-terms (without explicit typing) was posited independently
by Church in the 1930s as a means of investigating the computational and logical
possibilities of pure functionality. Today the theory goes by the name “simply-
typedλ-calculus.” The observation, by Curry and Feys (1958), that the transla-
tion given above induces a complete structural isomorphism between the minimal
natural deduction system outlined in Section 2.1 and simply-typedλ-calculus,
apparently came as a surprise to logicians.
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Readers familiar withλ-calculus may note that the contraction of deduction
(2.8) to deduction (2.9) corresponds to the replacement of an expression of the
form (λu.t)s by the expressiont [u/s], where the notation means thatu is to be
replaced bys in t . This is known asβ-conversion in theλ-calculus context (modulo
many glossed details) and is the basic rule for evaluating functions.

The computational resources of simply-typedλ-calculus and otherλ-calculi)
have been well studied: see for example Asperti and Longo (1991), Girardet al.
(1988), Gunter (1992), Mitchell (1996), Stoy (1977), and Troelstra and Schwicht-
enberg (2000) among many others.

The isomorphism sketched above may be extended to one that obtains be-
tween the minimal intuitionistic implicational deductive fragment of Section 2.1
with inference rules for conjunction (∧) and disjunction (∨) appended, and an
appropriately supplemented version of simply-typedλ-calculus.

For example, the inference rules for conjunction are three in number (one
Introduction and two Eliminations), namely

A B

A∧ B
∧ I (2.15)

A∧ B

A
∧ 1E

A∧ B

B
∧ 2E (2.16)

There are identifications among certain deductions involving∧. For example,

...
...

A B
A∧B

A

is identified with
...
A

(2.17)

and similarly for the other elimination rules.
Disjunction in an intuitionistic system is independent of conjunction (since

De Morgan duality does not obtain) and is generally contentious. In our system
there are two Introduction rules, namely

A

A∨ B
∨ 1I and

B

A∨ B
∨ 2I (2.18)

and one problematical Elimination rule, namely:

[ A] [ B]
...

...
...

A∨ B C C

C
∨ E (2.19)

The problem here is the extraneousC, which introduces an uncontrollable
element into the business of deriving general theorems about deductions (see Girard
et al., 1988, Ch. 10).
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To extend the Curry isomorphism to this supplemented natural deduction
system, we again appeal to the Heyting paradigm. For the conjunctionA∧ B to
be intuitionistically valid, we must possess a deduction ofA anda deduction of
B, and know which deduction belongs to which formula; that is, we must possess
an ordered pair of deductions. If a formula is identified with its set of deductions,
then the set of deductions ofA∧ B should be identified with the product of the set
of deductions ofA and the set of deductions ofB.

Thus, the∧of formulae should be associated, in the extended correspondence,
with the product,×, of the corresponding types.

Similarly, A∨ B is intuitionistically valid only if we have a deduction of
A or a deduction ofB, and an indication ofwhichone of these formulae has been
deduced. The collection of such pairs constitutes the disjoint union (or direct sum
in the category of sets) of the sets of deductions of the constituent formulae.

Thus, the∨of formulae should be associated, in the extended correspondence,
with the sum,+, of the corresponding types.

The Curry correspondence thus extended is part of W. A. Howard’s contri-
bution to the full isomorphism, which now bears the name Curry–Howard (cf.
Troelstra and Schwichtenberg (2000, p. 59). The other part of Howard’s contribu-
tion to the isomorphism involves quantifiers, which we are ignoring here.)

The importance to computational theory of isomorphisms of the Curry–
Howard type is that, since formulae may be regarded as types through their use,
deductionsmay be concomitantly regarded ascomputations(or programs), which
transform types (patterns of data) into types in stepwise fashion. Reversing this
perspective, such isomorphisms allow us to regard the apparently static program
represented by aλ-term in a dynamical light, since such a term may be unfolded
to reveal the underlying deductive structure, with its flow of openings and closings
of assumptions. It is this aspect of the Curry–Howard isomorphism that arguably
has had the most impact.

2.3. The Gentzen Sequent Calculus

The Gentzen sequent calculus may be regarded initially as a metacalculus for
handling deductions in natural deduction systems, though it has been developed
in various directions as a style of deductive reasoning in its own right. In its guise
as a metacalculus for natural deduction, the sequent calculus delineates certain
symmetries and structural aspects of the underlying deductive system which remain
hidden, or at least less apparent, if one remains fixed at the natural deduction level.
This organizing power of the style has had a major impact on the proof theoretic
aspects of deductive logic.

The basic object is thesequent

0 ` 1 (2.20)
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in which0 and1 stand for (possibly empty) finite sequences of formulae. (Empty
sets of formulae are usually denoted by their omission, as in0 `, which is Eq.
(2.20) with1 empty.) It is possible—and indeed advisable—to allow more gen-
eral assemblages of formulae. This becomes apparent when natural deduction is
used as the underlying model: then0, etc., would stand for collections of for-
mula occurrences. The use of sequences will suffice for our purposes. Upper
case Greek characters will have this (standard) connotation in our discussions of
sequents.

The informal reading of (2.20) is along the lines of “
∧
0⇒∨

1.” This reading
can be adduced from the natural deduction model, if (2.20) is supposed to describe
a deduction with a set0 of hypotheses and conclusion in1: it forces the interpre-
tation of`1 as asserting the truth of

∨
1 and0` as asserting the falsity of

∧
0.

(In keeping with this model, and noting again the disruptive effects of disjunction
in intuitionisťic systems, sequents in which1 consists of at most a single formula
are termed “intuitionistic.”)

In Gentzen calculi the inference rules are often divided into classes: structural
rules, logical rules and an “identity group.” A deduction in sequent calculus is
usually referred to as aproof.

By way of example, we shall briefly describe the rules for a non-intuitionistic
minimal propositional sequent calculus. (The horizontal line in a rule represents
the inference of the sequent below it from the sequent or sequents appearing im-
mediately above it.)

Structural Rules
These refer to the management of formulae within sequents. (The appropriate

label appears to the right of the inference line, as in natural deduction: LE for left
exchange, etc.)

Exchange

0, A, B, 0′ ` 1
0, B, A, 0′ ` 1 LE

0 ` 1, A, B,1′

0 ` 1, B, A,1′
RE (2.21)

Weakening

0 ` 1
A, 0 ` 1 LW

0 ` 1
0 ` 1, A

RW (2.22)

Contraction
A, A, 0 ` 1

A, 0 ` 1 LC
0 ` 1, A, A

0 ` 1, A
RC (2.23)

These rules appear quite innocent at first sight: they are what one would expect
from the presumed properties of

∧
and

∨
in the informal reading of the sequent

0 ` 1 as “
∧
0⇒∨

1.” They appear less innocent in the reading of0 ` 1 as a
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description of a deduction in a natural duction system of the type described in the
last section. In this reading, Weakening corresponds to the possibility of introduc-
ing spurious or null collections of occurrences of a formulaA, while Contraction
corresponds to the possibility of amalgamating certain collections of occurrences
of A. Further innocence is lost, as Girardet al. (1988) points out, in anoperational
reading of the sequent calculus. In this reading, formulae, considered as typesà la
Curry–Howard, are regarded asresources, and0`1 has the informal interpreta-
tion: “Use up0 to produce1.” Then LC (2.23), for example, has the connotation
that, while twoAs are required to produce1, we can get away with only one use
of A to effect the production of1. The “resource”A must then bestorableand
can be copied, or cloned, for reuse. One might say thatA admits storageor isstor-
age capable. Clearly, many real resources, like coins, do not have this convenient
property: if an item requires two coins for its purchase, then one will not suffice.

The Identity Group
This terminology seems to be due to Girard (Girardet al. (1988)).

Axiom
This is the analog of the first rule of inference for natural deduction, namely

that a (wellformed) formula is by itself a deduction. The same provisos obtain: the
axiom is properly stated only for atomic formula and then can be shown to obtain
for general ones. Since we have continued to procrastinate on the issue of atomic
formulae, we shall state the axiom in the customary form, to wit:

A ` A Ax (2.24)

Cut

0 ` 1, A A, 0′ ` 1′
0, 0′ ` 1,1′

CUT (2.25)

The CUT rule is an extremely reasonable meta-rule for the handling of natural
deductions. Indeed, its natural deduction analog can be deduced from the other
rules of natural deduction. The use ofA in this rule is akin to the use of a lemma in
a mathematical proof, or the use of a subroutine in a computer program. In these
forms, the CUT rule would seem to be part and parcel of both of these august disci-
plines, among others. It is, however, problematical from the point of view of proof
theory itself, since the appearance and disappearance of the possibly extraneous
and uncontrollableA greatly complicates tree handling techniques. It may there-
fore come as a surprise to learn that, even in very general Gentzen calculi, cuts can
be removed from any proof. That is to say, any proof involving uses of CUT may be
recast without using CUT. This is the gist of Gentzen’s justly famous “Hauptsatz”
(cf. references already cited). This centrally important result is rather counterin-
tuitive at face value since it seems to imply that the usual modes of proof—for
instance in mathematics—are somehow redundant. In the programming analogy
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the removability of cuts seems more plausible: to “remove” the cuts—i.e, subrou-
tine calls—from a program, compile it into runnable object code. Or, to put it more
dynamically,run the program. This is, of course, simplistic, but encapsulates the
main idea behind the proof.

Logical Rules
These rulesintroducethe logical operators (via the right rules) andeliminate

them (via the left rules).

0, Ai ` 1
0, A0 ∧ A1 ` 1Li∧, i = 0, 1.

0 ` A,1 0′ ` B,1′

0, 0′ ` A∧ B,1,1′
R∧ (2.26)

0, A ` 1 0′, B ` 1′
0, 0′, A∨ B ` 1,1′

L ∨ 0 ` Ai ,1

0 ` A0 ∨ A1,1
Ri∨, i = 0, 1. (2.27)

0 ` A,1 0′, B ` 1′
0, 0′, A⇒ B ` 1,1′

L ⇒ 0, A ` B,1

0 ` A⇒ B,1
R⇒ (2.28)

For intuitionistic systems, all of these logical rules—with the exception of
L∨—are restricted merely by allowing at most one formula to the right of turnstiles.
Only in the case of L∨ is the intuitionistic version not just a restriction of this kind,
since the1,1′ is disallowed. Instead, the rule is replaced by

0, A ` 1 0′, B ` 1
0, 0′, A∨ B ` 1 (2.29)

where1 contains at most one formula.
For anintuitionisticGentzen sequent calculus it is generally possible to pro-

duce a natural deduction system that might be presumed to underlie it. This is
done by judiciously (and recursively) assigning terms to sequents, and then re-
garding these terms asλ-calculus-like descriptors of underlying deductions. (The
correspondence sending a sequent proof to its associatedλ-term is generally not
one-to-one.)

For instance, for the intuitionistic version of CUT, which reads

0 ` A A,1 ` B

0,1 ` B
(2.30)

the term assignment takes the form

0 ` t :A x:A,1 ` u:B

0,1 ` u[x/t ]:B
(2.31)

This is a formalized version of an obvious replacement of deductions in
natural deduction:t labels the deduction ofA from 0, andu labels the deduction
of B from the deductionx of A and1. Thus, from0,1 we may deduceB by
using the deductiont in place ofx, thereby cuttingA out of the lower sequent.
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Readers familiar withλ-calculus will recognize that sequent proofs conducted
without the use of CUT will producenormalλ-terms, i.e. terms that are not re-
ducible. The fact that CUT can be eliminated is essentially equivalent to the fact
that simply typedλ-calculus is (strongly) normalizable: everyλ-term is reducible
to a unique normal form (cf. works already cited).

More to the point for our future purposes is the observation (cf. Abramsky,
1993) that thecomputationalaspects of such deductive systems are seen to reside
precisely in the process of cut elimination.

The Gentzen sequent formalism reveals structural and behavioral attributes
of the underlying, or associated, natural deduction system and the equivalent term
calculus. Among its lessons, we emphasize

• the critical importance of the structural rules, and their sensitivity to dif-
ferent semantic readings of the associated natural deduction system;
• the fact, just noted, that all computation resides in the process of cut elim-

ination;
• the value—much appreciated by computer scientists—of the explicit typing

of terms and the careful maintenance of such typing through the course of
deductions.

In this paper and its sequels we shall attempt to carry these lessons into the
quantum domain.

3. QUANTUM COMPUTATIONAL PARADIGMS

3.1. Quantum Logic

The minimal core of quantum logic is known asorthologic (OL). This is
simply the weakening of classical logic, which results when one does not insist
that AND distributes over OR: it is the logic that might have replaced classical
logic had classical logicians failed to notice this distributivity in their ambient
world of macroscopic objects.

The realization of (first-order) orthologic as a (nonintuitionistic) deductive
system seems first to have been achieved by Goldblatt (1974); see also Dalla Chiara
et al. (2002). The atoms or primitive symbols are

(i) a denumerable collectionΦ0 of propositional variablesa1, a2, . . .;
(ii) the connectives∼ (“negation”) andu (“conjunction”); and

(iii) parentheses.

The setΦ of (well-formed)orthoformulae(or justformulae, until this desig-
nation becomes ambiguous) is constructed from these in the usual way. Elements
of Φ will be denoted by lower case Greek charactersα, β, . . . , taken usually from
the beginning of the alphabet. (We shall try to reserve characters at the end of the
alphabet for elements of sets of various kinds.)
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Since there is no implication sign inΦ a formal deductive calculus is based
onsequentsinvolving at most single formulae and written in the form

α ` β (3.1)

for α, β ∈Φ, the intended reading of which is thatβ may be inferred fromα.
Certain sequents are designated asaxioms, and there are threerules of inference,
namely, for any formulaeα, β:

Axioms

O1. α ` α
O2. α u β ` α
O3. α u β ` β
O4. α `∼∼ α
O5. ∼∼ α ` α
O6. αu ∼ α ` β

Inference Rules

O7.
α ` β β ` γ

α ` γ
O8.

α ` β α ` γ
α ` β u γ

O9.
α ` β
∼β ` ∼α

A conjunctive connective may be introduced according to the definition

α t β ≡ ∼((∼ α) u (∼ β)) (3.2)

and dual forms of O2, O3, O6 and O8 follow.
A string s1; s2; . . . ; sn of sequents is called aproof of its last membersn if

eachsi is either an axiom or follows from some preceding sequent through the use
of one of the rules of inference.

If there exists a proof of a sequentα`β we write

α `o β (3.3)

and say thatβ is deducible fromα in orthologic.
If α `o β for any formulaα, we say thatβ is a theorem of orthologicor an

orthotheorem, and we write

`o β. (3.4)

(Note that this condition is equivalent toαt ∼ α `o β.)
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We recall that there are completeness theorems for ordinary PC and IL, which
assert connections between the analogous forms of deducibility in these logics
and the behavior of morphisms, or valuations, of formulae into certain classes of
lattices: Boolean algebras in the case of PC and Heyting algebras in the case of IL
(cf. Bell & Slomson, 1969). There is an analogous characterization of orthologic,
involving a class of lattices calledortholattices.

An ortholatticeis a bounded lattice〈L , t, u, 0L , 1L ,′ 〉 where ( )′ is a unary
operation calledorthocomplementationsatisfying

complementarity : ∀a ∈ L , a u a′ = 0L , a t a′ = 1L

unitarity : a′′ = a
antitonicity : a v b iff b′ v a′

It is easily shown that any ortholattice satisfies De Morgan’s laws, e.g.

a t b = (a′ u b′)′. (3.5)

An ortholattice is said to becompleteif arbitrary subsets have meets and joins:
a complete ortholattice satisfies the complete generalizations of the De Morgan
laws. Examples of ortholattices include all Boolean algebras and lattices of closed
subspaces of Hilbert spaces, with the usual operations.

Given an ortholatticeL, a functionvL :Φ0→ L determines avaluationupon
Φ via the recursive definitions:

vL (α u β) = vL (α) u vL (β) (3.6)

vL (∼α) = vL (α)′ (3.7)

The algebraic characterization theorem for orthologic may be stated as
follows.

Theorem 3.1. (Goldblatt, 1974). γ `o α iff vL (γ ) v vL (α) for all ortholat-
tices L and all valuations vL.

Corollary 3.1. `o α iff vL (α)= 1L for all ortholattices L and all valuations vL .

In classical PC the material implication connective (→) is expressed in terms
of other connectives, namely,p→q≡¬p∨q, a problematic interpretation en-
tailing certain anomalies of great antiquity. In the absence of the distributive law,
we might expect further problems for an implication connective cobbled together
out of other connectives. This expectation is maximally realized; in fact no viable
implication for orthologic can be manufactured out of the other connectives at all.

In ordinary classical PC the interpretation of material implication,p→q, as
¬p∨q has the consequence that for any Boolean algebra valued valuationv,

v(p→ q) = v(p)′ ∨ v(q) = 1 iff v(p) ≤ v(q). (3.8)
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However, this situation fails to hold in OL, as the following example shows

(3.9)

In this (nondistributive) ortholattice, known as theChinese lantern, we have
a′ t b= 1 buta 6v b. Thus (3.8) would fail for certain valuations into this lattice of
certain orthoformulae, showing that∼α tβ would not be a viable interpretation
of a deductionα `o β in OL, in view of Theorem 3.1.

There is another characterization of classical implication. In any Boolean
algebra the elementp→q, defined as above, is characterized by the following
property:

r ≤ p→ q iff r ∧ p ≤ q (3.10)

from which it follows thatr = p→q is the largest element satisfyingr ∧ p≤q.
Such elements need not exist in nondistributive lattices, so this avenue of general-
ization seems to be closed to us: it will reopen later.

The condition (3.10) is an expression of the fact that a Boolean algebra, when
considered as a category whose objects are its elements and with morphisms given
by≤, is cartesian closed, p→q being the exponential object usually denoted by
qp (cf. Mac Lane & Moerdijk, 1992, p. 48).

What we seek is an orthoformula (or orthopolynomial) inα, β—denote it
by α−→∗ β—for whichα `o β iff `o α−→∗ β. For any orthovaluationv we would
then have

v(α−→∗ β) = v(α)−→∗ v(β) = 1 iff v(α) v v(β). (3.11)

This is a problem involving only one pair of elements in the target lattice
at a time. If these elements themselves lay inside a Boolean subalgebra of the
target lattice then the conditionv(α)v v(β) would be equivalent to the condition
v(α)′ t v(β)= 1 and the hunt for−→∗ (with the hope that, at least in this case, we
would havev(α−→∗ β)= v(α)′ t v(β)) might be greatly simplified, albeit at the
cost of specializing the logic itself.

Let us then confine our choice of algebraic models to the subclass of ortho-
latticesL satisfying the following condition:

For a, b∈ L, if av b then the subortholattice ofL generated bya andb is
distributive, hence Boolean.
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Ortholattices satisfying this condition are precisely theorthomodularones, ex-
amples of which include Boolean algebras, which are just the distributive ones,
and the lattice of projections in aW∗-algebra, an example that includes the case
of Hilbert lattices: namely, the lattices of closed subspaces of Hilbert spaces. The
Chinese lantern, depicted above, is also orthomodular (cf. Dalla Chiaraet al., 2002,
Kalmbach, 1983).

There is an important notion ofcompatibilityamong elements in an ortholat-
tice, an appellation having a physical origin. Namely, an elementa is said to be
compatiblewith an elementb, writtenaCb, iff

a = (a u b) t (a u b′) (3.12)

It turns out that in an orthomodular lattice:

aCb iff bCa (3.13)

and that this condition characterizes orthomodularity.
In a Hilbert lattice this condition is equivalent to the commutativity of the

corresponding projections and for this reason the compatibility relation is often
calledcommutativity, and written more symmetrically asa↔ b. This symmetry is
justified in an orthomodular lattice in view of (3.13). Note thata↔ b iff a↔ b′ and
that if av b thena↔ b. We can also defineorthogonality(⊥) in an ortholattice,
namely,a⊥ b iff av b′. Thus, if a⊥ b in an orthomodular lattice we also have
a↔ b.

Now we return to the search for an implicative connective in the subclass of
orthomodular ortholattices. It can be shown (Dalla Chiaraet al., 2002, Kalmbach,
1983) that in an orthomodular lattice there are exactlyfivecandidates for an impli-
cation−→∗ satisfying condition (3.11). Of these, only one satisfies the following
“weak cartesian closure” property (cf. (3.10)), also called the “weak import-export”
property:

if a↔ b, thenc v a−→∗ b iff cu a v b (3.14)

and is given by

a−→q b ≡ a′ t (a u b). (3.15)

This connective has come to be called theSasaki hook, though the list of
names of other pioneering toilers in this field include those of Finch, Mittelstaedt
and Hardegree: please see the references already cited, particularly Dalla Chiara
et al. (2002). By reason of (3.14) the Sasaki hook is often the implicative connective
of choice for the logic that is characterized by algebraic models consisting of
orthomodular lattices and valuations into them. As Goldblatt has shown (Dalla
Chiaraet al., 2002; Goldblatt, 1974), this logic may be axiomatized by adding a
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single axiom (labelled OM) to the list O1–O6, namely

α u (∼α t (α u β)) ` β. OM

Deducibility in this logic is defined as in OL, and will be denoted by`OM.
We will refer to thisorthomodularlogic as OML. (Warning: Dalla Chiaraet al.
(2002) labels it OQL.)

Thus, we have the following theorem:

Theorem 3.2. α `OM β iff `OM α−→q β iff vL (α)v vL (β) for all orthomodu-
lar lattice valued valuations vL.

Now it happens that the Sasaki hook, optimal though it may be, is, neverthe-
less, rather anomalous: it can be shown for instance that

α−→q (β−→q α) (3.16)

is not always true. Insofar as−→q reflects deducibility in OML, it would appear
from the invalidity of (3.16) that this type of deducibility is far from being con-
structive in the sense of natural deduction: cf. equation (2.6) for instance. This
intractability, unsurprisingly, shows up also in Gentzen calculi for OML. Here,
CUT is generally not eliminable (cf. Gibbins, 1987, for example).

Our conclusion is that standard OML is even less suited to the purpose of
constructive deduction than is ordinary classical PC, over and above the obviously
nonconstructive axioms O5 and O6. In Section 3.2 we will attempt to redress this
by extending the intuitionistic “formulae-as-types” paradigm into the quantum
domain. This will take some care, and to prepare the way we first briefly examine
some of the possible pitfalls by resorting to another class of models for OL, which
are of greater semantic interest than the algebraic ones.

3.2. Kripke Orthomodels for OL and the Failure of the Heyting Paradigm

Since the introduction of orthomodularity apparently did nothing to amelio-
rate the nonconstructive failings of quantum logic, we jettison this condition and
return to a very brief consideration of the core logic OL from a proof theoretic
perspective as a step along the path—paralleling the route taken in the classical
case—to a more expressive resource-sensitive version of quantum logic.

The Kripke modelsfor orthologic seem to have appeared first in Goldblatt
(1974) and have been extensively elaborated upon by Dalla Chiara and others (cf.
Dalla Chiaraet al., 2002; Rawling & Selesnick, 2000). To describe them, some
terminology is needed.

An orthogonality space F=〈W,⊥〉 comprises a setW and a binary relation
⊥ ⊆W×W which is anorthogonality: namely, it isirreflexive(not x⊥ x) and
symmetric(x⊥ y iff y⊥ x).
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For x ∈W, Y⊆W we write

x ⊥ Y iff x⊥y ∀y ∈ Y (3.17)

and define

Y⊥ ≡ {x : x⊥Y} (3.18)

In Goldblatt’s terminology (Goldblatt, 1973)Y⊆W is said to beregular if

Y⊥⊥ = Y. (3.19)

Then the classR(F) of⊥-regular subsets ofW is a complete ortholattice under the
partial order given by set inclusion, with the lattice meet given by set intersection
and⊥ as orthocomplement. It is not hard to show that, forE, F ⊆W

E ⊆ E⊥⊥ (3.20)

and

(E ∪ F)⊥ = E⊥ ∩ F⊥ (3.21)

A proximity spaceis a pair〈W,≈〉 in which the relation “≈” is reflexive
(w≈w) andsymmetric(v≈w iff w≈ v). Clearly each proximity space〈W,≈〉
determines an orthogonality space〈W,⊥〉 wherex⊥ y iff x 6≈ y, and, conversely,
each orthogonality space〈W,⊥〉 determines a proximity space〈W,≈〉 where
x≈ y iff not x⊥ y.

A Kripke orthomodelM=〈W,≈, %〉 is a proximity spaceP=〈W,≈〉 and
a function (called avaluation) %:Φ→ R(〈W,⊥〉) satisfying

%(∼α) = %(α)⊥ (3.22)

%(α u β) = %(α) ∩ %(β). (3.23)

We will say that a formulaα is
true at the “world” w ∈W, and writew|≡M α,

iff w ∈ %(α);
true on a set E⊆W, and writeE|≡M α,

iff w|≡M α for all w ∈ E—that is, iff E⊆ %(α);
true in the Kripke orthomodelM

iff it is true at every world inM;
Kripke valid, and write|≡ α,

iff it is true in all Kripke orthomodels.

Theorem 3.3. `o α iff |≡ α.
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A question that now interposes itself concerns the semantics of disjunction.
In a Kripke orthomodel we have, for formulaeα andβ, andE⊆W as above:

E|≡M α t β iff E ⊆ %(α t β)

= %(∼(∼α u ∼β))

= (%(α)⊥ ∩ %(β)⊥)⊥

= (%(α) ∪ %(β))⊥⊥ by (3.21)

⊇ %(α) ∪ %(β) by (3.20) (3.24)

Thus, the interpretations of orthodisjuncts are, in a sense, double negations
of ordinary disjuncts of propositions—these are not necessarily themselves or-
dinary disjuncts: there are generally more “worlds” in%(α tβ) than there are
in %(α)∪ %(β); that is, one could havew|≡M α tβ while neitherw|≡M α nor
w|≡M β holds.

When viewed constructively, a proof of an orthotheorem of the formα tβ
would require a deduction of the truth of an assertion of the formw|≡M α tβ at
eachw in an orthomodel. Thus,w could be used in the labelling of a deduction
of α tβ while not entering into the labelling of a deduction of eitherα or β.
Deductions of orthodisjuncts are not necessarily determined by deductions of either
components. Herein lies one of the highly nonconstructive aspects of quantum
logic and one which stands in the way of a direct application of the standard
Heyting paradigm to effect a transition to an intuitionistic “quantum” type theory,
since, in this case, the classical set of deductions of a “quantum” disjunct cannot
be identified with the sum of the classical sets of deductions of the individual
components. Rather, some quantum version of the paradigm is called for.

3.3. GQ: A Minimal Intuitionistic Gentzen Calculus for Quantum Resources

Standard quantum logic has been found wanting as a deductive system since
deducibility in it is intrinsically nonconstructive, a failing it shares with classi-
cal PC. In the classical case the path to a more expressive deductive logic led,
through (intuitionistic) proof theoretic systems, to type theories like simply typed
λ-calculus and beyond.

In this section we initiate an entirely syntactic attempt to specify a “quantum”
type theory in formal imitation of the Curry–Howard correspondence. As we have
learnt, the ordinary set theoretic type combinators are inadequate as intuitionistic
models here, so new ones must be introduced: this will be done by means of an
intuitionistic Gentzen calculus that we shall dub GQ. Upper case Latin characters,
A, B, . . . shall be used to denote formulae (or, synonymously, types) in GQ and
we leave the choice of atoms in abeyance.
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The multiplicative operation on types that is supposed to correspond intu-
itionistically to theu of OL (as× corresponds to∧ in the ordinary Curry–Howard
correspondence) will, for obvious reasons, be denoted by⊗. Similarly, the oper-
ation on types corresponding intuitionistically to thet of OL will be denoted by
⊕, and that corresponding to∼( ) by ( )∗. These symbols (⊗,⊕, ( )∗) should not
(yet!) be confused with their linear algebra counterparts: their use here is purely
syntactic, the purpose being to bring to the fore thelogical connections between
the intuitionistic fragment of OL to be discussed later, and the Gentzen system
at hand. Different symbols could (and probably should) be used, but this option
seems specious.

Recall that an intuitionistic sequent calculus is one which is supposed to
be a metacalculus for some (notional or derivable) underlying natural deduction
system, so that only single formulae—or none at all—are allowed on the right
hand sides of sequents. We introduce the notationD to represent either a single
formula or the absence of a formula (i.e. the null sequence). Otherwise, upper case
Greeks will denote (possibly empty) sequences of formulae.

In constructing these rules, we have taken seriously the notion ofdischarging
hypotheses in natural deduction. The turnstile` will be read as a kinematical
interface through which formulae (quantum resources) may be discharged, this
process being registered by the production of the starred version of the formula on
the other side of the turnstile. The idea is that a deduction

A...
B

(3.25)

in the notional underlying natural deduction system results in the discharge of
A while B is produced. Put another way,A is dischargedin the presence of B,
resulting in the following inference:

A...
B

A∗ ⊗ B
(3.26)

In sequent language, this is expressed as

A ` B

` A∗ ⊗ B
(3.27)

which may be read: ifA producesB then it is the case thatA is discharged in the
presence ofB.

If A produces nothing,A`, then it may discharge by itself:

A `
` A∗

(3.28)
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Similarly, from the presumed behavior of the quantum interface, a sequent
of the form0, A` B has the reading thatA in the presence of0 producesB, and
may be discharged through the interface, leaving0 undischarged. This yields the
rule

0, A ` B

0 ` A∗ ⊗ B
(3.29)

We presume in addition that this interface is symmetrical to the extent allowed
by the structural constraints of an intuitionistic calculus. For instance, if it is the
case thatA and B are “present,” namelỳ A⊗ B, then A may be discharged to
leaveB no longer in its presence, and this process is also a proof (i.e. a deduction)
in the calculus:

` A⊗ B

A∗ ` B
(3.30)

(Here,B may be absent.)
Similarly, this may be done in the case in which0 ` A⊗ B. A may be

discharged in the presence of0 to leaveB by itself:

0 ` A⊗ B

0, A∗ ` B
. (3.31)

The rules (3.29) and (3.31) are the rules ofnegationin our calculus. Here,
negation is seen as a form of discharge, absorption or annihilation, and should not
be confused with negation in OL, just as negation in PC should not be confused
with IL-negation. (In fact, negation in IL may also be seen as a form of annihilation:
to IL-negate a formula one must deduce falsity from any purported proof of it. That
is, identifying the formulaA with its set of proofs, and denoting byf the falsum,
or logical constant for falsity, the IL-negation ofA may be writtenA⇒ f. ThusA
is consigned to the logical vacuum, or annihilated.)

We now consider the structural rules. We shall retain the Exchange rules,
insofar as they may be applied under intuitionistic constraints, since there is no
implicit logical ordering of the component formulae in OL conjuncts. (Issue could
certainly be taken with this point, but we shall adopt this option here, if only for
reasons of simplicity.)

The other structural rules are more problematical. We will adopt as our in-
formal guide in these considerations aquantumversion of the Heyting paradigm.
Thus, we will think of the resource (or type)A as behavinglike a “quantum set”
of deductions of some underlying OL formula. Thus, thetermsof type A will be
like deductions of some OL formula, but subject to quantum operations such as
superposition. This should not be taken in any literal sense, since our purpose here
is merely to arrive at a collection of logical or syntactical rules. (Later, we will
indeed take this quantum version of the Heyting paradigm more literally.)
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Consider the rule of Contraction (cf. (2.23)), which has only a left form in
the intuitionistic calculus, namely

A, A, 0 ` D

A, 0 ` D
. (3.32)

In the classical case of a notional underlying natural deduction system this is
justified, since the sets of labels for the two collections of deductions of the formula
corresponding to the typeA can be amalgamated into a single set, while remaining
intact, and discharged simultaneously: only a single invocation ofA is therefore
required. These resources are storage capable. Deductions associated with one
occurrence ofA can be copied, or duplicated for the benefit of other occurrences
of A. In our quantum case certain terms associated with one of the occurrences of
the resourceA may be annihilated in the course of a deduction while some of those
associated with the other occurrence may remain. Thus, amalgamation into single
collection may not be possible, owing to the evanescence of quantum processes,
and we must jettison Contraction as a general rule. This has the consequence that
general quantum resources of this type arenotstorage capable.

The meaning of Weakening (cf.(2.22)), which it will prove convenient to
express in the form

0 ` D

0, A ` D
, (3.33)

may be interpreted analogously, in the natural deduction model, as the capability
of introducing spurious, or null, collections ofA occurrences which have no con-
textual side effects. This seems contrary to the general behavior of actual quantum
resources: the introduction of new quantum acts into extant arrangements of acts
may interfere with the behavior of those arrangements. (Consider, for example, the
interposition of a filter between orthogonal polarizers on an optical bench. Pho-
tons previously blocked may now pass through the array.) UnlessA is somehow
insulated, its introduction might affect the context0 by mixing or superposition
so that0, A ` D is not guaranteed. Thus, we must also relinquish Weakening as
a general rule.

If this were all that could be said about the structural rules, our investiga-
tion would end here. For, in the absence of storage capable elements, no useful
computations could be carried out, even in principle: iterative processes would be
blocked and the calculus would be useless. Consequently, inspired by Girard in a
similar context (Girardet al., 1988), we will institute a search for possible special
instances of quantum resources for which the structural rules might be reinstated,
or rather, we search for the logical rules which specify such resources. Before em-
barking on this, we note that, in light of the discussion above, if a storage capable
resource could be found for which Contraction holds, then the annihilation or dis-
charge of the terms belonging to separate instances of it in any sequent in which it
appears more than once, must, in a sense, be coordinated. Thus quantum duplication
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would necessarily be associated with some kind of coordination or correlation of
terms distributed over separate instances of the resource. This observation will be
confirmed in detail later, a circumstance that has profound consequences.

We continue to adopt as our informal guide in this search a quantum version
of the Heyting paradigm, which, curiously, will turn out to work formally as
well, revealing better behavior than its non-quantum counterpart. Let us suppose,
then, that a quantum typeA is in fact the “quantum set” of deductions of some
orthoformulaα. Then the terms ofA denote deductions ofα, so certain terms of
A may be annihilated or discharged without affectingα itself. Thus,α may be
used toregenerate A. So, in this case, reuses of the resource—and its concomitant
storage capability—could be envisaged. Of course,Acannot generally be regarded
as being of this type, but we could try this idea at the next level. Namely, let us
assume that the (quantum) set of proofs ofA could itself be assembled into a
quantum type, denoted !A (pronouncedof course A—name and notation due to
Girard). Then identical considerations apply toA rather than toα, with !A now
being storage capable and, presumably, subject to the rule of Contraction.

Moreover, reverting to the case in whichA models the quantum set of deduc-
tions of some orthoformulaα, there is a collection of deductions ofα corresponding
to instances of axiom O6. Each such deduction corresponds to the inclusion of the
proposition Ø into any proposition in any Kripke orthomodel. We could intro-
duce a spurious OL deduction of the form$ `o α, where$ denotes thequantum
falsum, which is a logical constant sent to 0 in any algebraic orthomodel. This
spurious deduction ofα would then give rise to a term of typeA denoting in a
sense the generic spurious quantum collection associated withA. Recapitulating
this at the higher level in whichA replacesα and !A replacesA, the existence of
such a spurious quantum collection—associated now with !A—could presumably
be used to implement Weakening for !A in place ofA in (3.33).

In addition to Contraction and Weakening—which we now posit for formulae
of the from !A—we require two more rules pertaining to the operator !. The first,

0, A ` D

0, !A ` D
, (3.34)

reads informally: if0 in the presence ofA can produce the resourceD, then0
in the presence of the type representing all proofs ofA can also produceD. This
would be reasonable if we were to adopt the axiomA` A, which we shall be
doing.

The second rule asserts the basic defining property of the operator !: namely,
in informal terms, it specifies the explicit circumstances under which a formulaA
may determine !A. To wit

!0 ` A

!0 `! A
. (3.35)
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(Here !0≡ ! A1, !A2, . . . , !An if 0≡ A1, A2, . . . , An.) If A has been produced
through the possibly repeated use of the storage capable resources !0, then these
resources may also be used to produce the multiplexed or repeatable version ofA,
namely !A. In this rule a formulaA must actually be present.

We can now dismantle the preceding verbal scaffolding and formally display
the basic sequents of our calculus. Recall thatD stands for a single formula or
no formula (the empty sequence). When it appears in the form⊗D, the⊗ sign is
understood to be absent whenD is empty.

GQ

Structural Rules

Exchange

0, A, B, 0′ ` D

0, B, A, 0′ ` D
LE

0 ` A⊗ B

0 ` B⊗ A
RE (3.36)

Weakening

0 ` D

0, !A ` D
LW No RW (3.37)

Contraction

! A, !A, 0 ` D

! A, 0 ` D
LC No RC (3.38)

The Identity Group

Axiom

A ` A Ax (3.39)

Cut

0 ` A A, 0′ ` D

0, 0′ ` D
CUT (3.40)

Logical Rules

Conjunctive (Multiplicative) Connective

0, A, B ` D

0, A⊗ B ` D
L ⊗ 0 ` A 0′ ` B

0, 0′ ` A⊗ B
R⊗ (3.41)
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Disjunctive (Additive) Connective

0, A ` D 0, B ` D

0, A⊕ B ` D
L ⊕ 0 ` A

0 ` A⊕ B
R⊕1 (3.42a)

0 ` B

0 ` A⊕ B
R⊕2 (3.42b)

Negation

0 ` A⊗ D

0, A∗ ` B
L∗ 0, A ` D

0 ` A∗ ⊗ D
R∗ (3.43)

!
0, A ` D

0, !A ` D
L!

!0 ` A

!0 `! A
R! (3.44)

The ruleL⊗ is a formationrule, while R⊗ is inherited from O8, etc. It is
apparent that GQ bears a close resemblance to a fragment of Linear Logic (LL) (cf.
Abramsky, 1993; Asperti & Longo, 1991; Bluteet al., 1993; Girardet al., 1988;
Seely, 1989; Troelstra & Schwichtenberg, 2000; among many other references to
this vast subject.) It is in fact equivalent to a degenerate form of a fragment of this
logic, namely, a version of LL in which the operators⊗ and⊕ coincide with their
dual forms. (LL often flirts with misconstruals by using the sign⊥ for negation.)
Various formal connections between versions of LL and versions of quantum logic
have already been proposed (cf. the last part of Dalla Chiaraet al. (2002) for an
account of some of these and references to others). None of these seem to be
obviously identical to what we have proposed here.

Denoting proof in GQ bỳ GQ we have the following.

Lemma 3.1.

1. A `GQ A∗∗ and A∗∗ `GQ A for any A.

2.
0, A `GQ B

0, B∗ `GQ A∗

Proof:

1. For the first assertion apply Ax, then R∗ with 0 empty, then L∗. Similarly
for the second.

2. Apply R∗, then RE, then L∗. ¤

A complete type theory would call for a set of term assignments to go with the
inference rules given above. Needless to say, this seems not to be straightforward
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in the quantum case, and we will postpone a complete treatment until a later paper.
(A certain term assignment is discussed in Section 3.5.)

3.4. Intuitionistic Orthologic and its Translation into GQ

If the formal calculus we have posited above is to properly reflect deductions
in the underlying deductive system it purports to describe, then we should be able to
reproduce this underlying system within the calculus itself. Of course, the best that
we could hope for would be to recover an intuitionistic version of this underlying
system, namely OL.

We obtain an intuitionistic version of OL by discarding the IL invalid axioms,
namely O5 and O6, and adding new ones for the disjunctive connective, since the
De Morgan Law does not hold intuitionistically. We denote these connectives by
the same symbols as before. The rules for the resulting system—which we shall
call IOL—are displayed hereafter.

Axioms

IO1. α ` α
IO2. α u β ` α
IO3. α u β ` β
IO4. α ` α tβ
IO5. β ` α tβ
IO6. α `∼ ∼α

Inference Rules

IO7.
α ` β β ` γ

α ` γ

IO8.
α ` β α ` γ
α ` β u γ

IO9.
β ` α γ ` α
β t γ ` α

IO10.
α ` β
∼β ` ∼α

Deduction in IOL will be defined as it is in OL and denoted by`IO.
We now attempt to translate IOL formulae into GQ formulae (assuming some

common set of atoms) by reinstating some of the scaffolding used to arrive at the
GQ rules. Specifically, we return to the informal reading of !A as the “quantum
set of proofs ofA.” Then we try a translation that is simply the (quantum) Heyting
paradigm applied recursively to the logical operators. That is to say, ifαe denotes
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the GQ formula that is the translated version of the IOL formulaα with

αe ≡ α forα atomic, (3.45)

then the Heyting paradigm yields exactly:

(α u β)e = !αe⊗!βe, (3.46)

(α t β)e = !αe⊕!βe, (3.47)

(∼α)e = (!αe)∗. (3.48)

Thus, equation (3.46) in this reading states: the GQ translation ofα uβ is as
(the quantum set of proofs ofαe) ⊗ (the quantum set of proofs ofβe). Equation
(3.48) in this reading states: the translation of∼α is as the annihilator of all proofs
of αe. This is the correct intuitionistic interpretation of falsity: every possible proof
is refuted.

This translation will be recognized immediately by readers conversant with
LL as being almost identical with the Girard embedding of IL into LL. It is worth
noting that the Heyting paradigm in its simple pristine non-quantum form is not
usually invoked to motivate the Girard embedding. However, as we shall see, it
seems to work perfectly and in explicit detail in the quantum case.

Specifically, with the translation rules given above, we have the following:

Theorem 3.4. If α `IO β then!αe `GQ β
e.

Proof: Before embarking upon the proof, some motivational remarks are in order.
We note first that the presence of the GQ formulaαe may be fleeting, whereas the
IOL formulaα is static and repeatable. Consequently, to have any expectation that
the deductionα `IO β may be translatable into a proof in GQ, we should render
the “producer”αe repeatable in GQ. Only then may deductions in IOL, which may
require repeated uses ofα, be done also in GQ: this explains the presence of !αe

in the translated version of the deduction.
The proof of the theorem is by induction on the length of a deduction: that

is, the numbern of steps in a deductions1; s2; . . . ; sn of the sequentsn, where the
axioms and inference rules used are those of IOL.

A deduction with one step must be an axiom, and we first prove the theorem
for each axiom in turn.
The proof for (IO1):

For anyα,
αe `GQ α

e

!αe `GQ αe
L!
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For (IO2):

For anyα, !αe `GQ α
e

above and W!
!αe, !βe `GQ α

e

L⊗
!αe⊗!βe `GQ α

e

L !
!(!αe⊗!βe) `GQ α

e

or !(α u β)e `GQ α
e.

For (IO3): Similar to (IO2), but using LE to interchange !αe and !βe after the
second step.

For (IO4):

!αe `GQ!αe

!αe `GQ!αe⊕!βe
R⊕1

For (IO5): Similar, using R⊕2.

For (IO6):

For anyα, (!αe)∗ `GQ (!αe)∗
L!

!(!αe)∗ `GQ (!αe)∗
Lemma 3.1(2)

(!αe)∗∗ `GQ (!(!αe)∗)∗
Lemma 3.1(1) and CUT.

!αe `GQ (!(!αe)∗)∗

But

(∼∼α)e = (!(∼α)e)∗

= (!(!αe)∗)∗

which proves the theorem for (IO6).
The inductive hypothesis forn is that the theorem holds for the last sequent in

all IOL deductions of length less thann. (The base case has been covered above.)
Consider a deductions1; s2; . . . ; sn of lengthn. If sn is an axiom then we

are done, as above. Ifsn is not an axiom, then it follows from a rule of inference
applied to preceding sequents. Each preceding sequent is itself the result of a shorter
deduction, so the theorem holds for each of these, by the induction hypothesis.

We consider each possible rule of inference in turn.

For (IO7): We suppose thatsn is of the formα `IO γ and follows,via (IO7),
from preceding deductionsα `IO β andβ `IO γ . Since, as remarked, these latter
deductions are shorter thann, the theorem holds for them, namely !αe `GQ β

e

and !βe `GQ γ
e. It follows from R! that !αe `GQ!βe and then from CUT that

!αe `LL γ
e, so the theorem holds for thissn.
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For (IO8): If sn is of the formα `IO β u γ and follows,via (IO8), from prior
deductionsα `IO β andα `IO γ , then, as above, !αe `GQ!βe and !αe `GQ!γ e. So

!αe `GQ!βe !αe `GQ!γ e

R⊗
!αe, !αe `GQ!βe⊗!γ e

LC
!αe `GQ!βe⊗!γ e

or !αe `GQ (β u γ )e

so the theorem holds for thissn.

For (IO9): If sn is of the formβ t γ `IO α, etc., then we have

!βe `GQ α
e !γ e `GQ α

e

L⊕
!βe⊕!γ e `GQ α

e

L!
!(!βe⊕!γ e) `GQ α

e

or !(β t γ )e `GQ α
e,

so the theorem holds for thissn.

For (IO10): If sn is of the form∼β `IO ∼α and follows,via (IO10), from the
shorter deductionα `IO β, then

!αe `GQ β
e

R!
!αe `GQ!βe

Lemma 3.1(2)
(!βe)∗ `GQ (!αe)∗

L!
!(!βe)∗ `GQ (!αe)∗

which is !(∼β)e `GQ (∼α)e so the theorem holds for thissn. ¤

3.5. A Realization of GQ

The pioneering efforts of J. Lambek (see Lambek & Scott, 1986, and ref-
erences therein)—who demonstrated a perfect correspondence between certain
categories (namely the closed cartesian ones) and certain typedλ-calculi (namely
theλβη-calculi with surjective pairing)—have led to a general appreciation that
certain categories provide good models for certain type theories. In such a model,
the types (or formulae) are interpreted as objects in an appropriate category, and
deductions are interpreted as morphisms going between the appropriate objects.

In the case of our system GQ the choice of category in which to carry out
such an interpretation would be clear on physical and constructive grounds, even
if we had used a different notation: namely, the category*F of finite dimensional
complex Hilbert spaces. To carry out this interpretation, we need to specify, for
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each unnamed atomic GQ formula, a corresponding object in*F . Supposing this
to be done, we then obtain for each GQ formulaA an object of*F merely by
interpreting the occurrences of⊗,⊕, ( )∗ in A as carrying their usual meaning in
the category*F , the asterisk denoting the dual space of linear functionals. (We
note that in functional analytic contexts a Hilbert space is customarily identified
with its dual spaceviaa correspondence that does not lie in the category*F , being
conjugate linear. In categorical contexts—and also in some physical ones—it is
advisable to maintain this distinction.)

We could now proceed informally by considering GQ formulae to be finite
dimensional Hilbert spaces, and, leaving aside for a moment the interpretation
of the operator !, we could replace each comma in a nonempty sequence0 by
⊗ and each empty sequence byC. GQ sequentsA `GQ B are then interpreted
inductively as elements of Hom(A, B) according to the interpretations specified
for the inference rules. For instance,A `GQ A (Ax) shall be interpreted as (or by)
the identity map 1A ∈Hom(A, A): the other rules hold in the category*F and
linear maps may be built up which interpret GQ proofs in an obvious way. Thus,
for example, in the case of CUT, if we have a proof interpreted as an element of
Hom(0, A)∼=0∗ ⊗ A and a proof interpreted as an element of

Hom(A⊗ 0′, D) ∼= (A⊗ 0′)∗ ⊗ D ∼= A∗ ⊗ (0′)∗ ⊗ D,

then the tensor product of these two elements lies in

0∗ ⊗ A⊗ A∗ ⊗ (0′)∗ ⊗ D.

The A⊗ A∗ component may now be contracted (small c!) to yield an element in
(0⊗0′)∗ ⊗ D. We specify this element as the interpretation in*F of the proof
0, 0′ `GQ D given by the CUT rule applied to the original proofs. The other rules
not involving ! can be treated similarly, using the properties of the connectives in
*F , an exercise we leave to the interested reader.

Now we turn to the question of how to model !A for a given finite dimensional
Hilbert spaceA. To do this we shall take seriously the earlier wishful interpretation
of ! A as the “quantum set of proofs ofA.” Recall that the latticeL(A) constitutes
a model of OL and equivalence classes of OL deductions ofA in the model
L(A) correspond with subspaces ofA, by Theorem 3.1. These subspaces can be
organized into a “quantum set,” namely the exterior algebraE(A)—the quantum
version of the set of subsets of the “set”A—which is an object in*F : this is exactly
the substance of the extensorial calculus of quantum sets. We shall digress to give a
very brief account of this notion, referring to Finkelstein (1996), Selesnick (1998)
and their references for fuller accounts.

Suppose we have a linear mapl :W→C, whereW is a vector space andC is
an associative algebra, having the property that for everyw ∈W,

l (w)2 = 0. (3.49)
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Then there is a universal object satisfying this property. That is to say, for ev-
ery vector spaceW, there exists an associative algebraE(W) and a linear map
ι:W→ E(W) satisfying equation (3.49), such that for any other linear map
l :W→C into an algebra satisfying equation (3.49), there exists a unique algebra
mapl̃ :E(W)→C such thatl = l̃ ◦ ι. The algebraE(W) is unique up to appropri-
ately commuting algebra isomorphisms. It is called theexterior algebraover W
and one instantiation of it is given by the antisymmetric, or fermion, Fock space,
namely

E(W) =
∞⊕

k= 0

∧kW

= C⊕W⊕W
∧

W⊕ · · · (3.50)

Here
∧

denotes the usual exterior product,
∧0W≡C and

∧1W≡W, ι is inclusion
of W as the

∧1-summand, and multiplication of homogeneous terms is by∧-ing
them together.

In this case, ifW is finite dimensional, of dimensionn, say, since

dim
∧kW =

(
n

k

)
, (3.51)

the series in equation (3.50) terminates atk= n, and dimE(W)= 2n.
We note a further property of the exterior algebra which will be of significance

later, namely, for finite dimensional vector spacesV andW the linear map∧mV ⊗ ∧nW→ ∧m+ n(V ⊕W) (3.52)

given in an obvious notation by

(v1 ∧ · · · ∧ vm)⊗ (w1 ∧ · · · ∧ wn) 7→ v1 ∧ · · · ∧ vm ∧ w1 ∧ · · · ∧ wn (3.53)

induces an isomorphism

∧p(V ⊕W) ∼=
p⊕

k= 0

∧kV ⊗ ∧p− kW (3.54)

whence an isomorphism of vector spaces (not algebras)

E(V ⊕W) ∼= E(V)⊗ E(W) (3.55)

(cf. Fulton & Harris, 1991, Appendix B; Lang, 1993). IfW is a Hilbert space,E(W)
may be given a Hilbert structure and is universal in the appropriate category.

Finkelstein seems to have been the first to recognize and address the follow-
ing problem. Ordinary quantum logic fails to take account ofextensionality. In
the standard interpretation, quantum logicalpredicates(which would determine
classes as theirextensionsin naı̈ve classical set theory) correspond toprojections,
or equivalently,closed subspacesof a Hilbert space, butsetsof quanta apparently
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do not. Thus there is an asymmetry between quantumclasses(i.e., quantum pred-
icates, or closed subspaces of a Hilbert space) and quantumsets(represented by
rays, not in the original space, but in the fermion Fock space (or exterior algebra)
based upon it. This asymmetry is absent in (na¨ıve, finitary) classical set theory,
where every class is a set. In considering higher order set-theoretic constructs,
such as sets of sets, there arises a concomitant problem: standard quantum logic is
necessarily only first order, dealing with predicates, but not with predicates whose
subjects are predicates, etc. Finkelstein’s suggestion to restore extensionality (in
the case of finite dimensions) is to replace the relevant Hilbert space with its ex-
terior algebra, and to regard the rays determined by its homogeneous (or simple)
elements as representing thequantum setscorresponding to the subspace spanned
by those elements. This correspondence goes back to Grassmann: specifically,
choose a subspace, ofW say, spanned by vectors{v1, . . . , vk}. If another basis
{w1, . . . , wk}were chosen, thenw1 ∧ · · · ∧ wk= λv1 ∧ · · · ∧ vk, whereλ denotes
the determinant of the linear transformation induced by the basis change. Thus,
subspaces ofW correspond bijectively with rays of homogeneous elements in
E(W), and (finite) extensional symmetry is now restored to quantum logic.

Following Finkelstein, our next observation concerns the mapι:W→ E(W).
This map interprets an elementα ∈W as a (quantum) setι(α) in E(W), which
is the analog of the classical set{α}. (This explains the iota, which was Peano’s
notation for the “unitizing” operation upon sets:ιA≡{A}.) Sinceι is linear, the
ray determined byα is sent to the ray determined byι(α). (They ray determined
byα corresponds to a quantumpredicate(or class), so the ray determined byι(α),
is a quantumset, now interpretable, as in ordinary set theory, as theextensionof
a certain predicateaboutthe predicate corresponding toα: namely, the predicate
“beingα,” roughly speaking.) Moreover, we note that the rayC appearing as the
first summand inE(W) represents the empty set Ø—this follows from our original
construction. It is the extension of no quantum predicate. The last nonvanishing
component of the exterior product, namely the one-dimensional space

∧nW, where
n is the dimension ofW, represents the whole “quantum set”W.

Any homogeneous elementι(α1) ∧ · · · ∧ ι(αk), say, inE(W) is a quantum
analog of the (disjoint) union{α1} ∪ · · · ∪ {αk}= {α1, . . . , αk}, but superpositions
are allowed, which of course have no classical counterpart. In fact,E(W) contains
a version of classical set theory—a realization which was not lost on Grassmann
and some of his followers.

The exterior algebra of a vector (or Hilbert) space has another property of
particular interest in the present context, namely, it is a coalgebra, with coproduct
ψW:E(W)→ E(W)⊗ E(W) given by

ψW(w) = 1⊗ w + w ⊗ 1 (3.56)

and counit given by projection upon the first component in (3.50). (We note that
ψW is an algebra map if the product onE(W)⊗ E(W) is taken to be thegraded
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product, given by

(a⊗ b)(c⊗ d) = (−1)deg(b)deg(c)(ac⊗ bd) (3.57)

where the degree deg(f ) of an homogeneous elementf is the power of the exterior
product it belongs to.)

With this coalgebra structure it is not hard to show that the isomorphism
(3.55) is in fact an isomorphism of coalgebras.

Now it turns out that this interpretation of the exterior algebra as the quantum
set of “proofs” or subspaces of a given space, works perfectly as a model of !;
namely,

LW: Consider the counitcA:E(A)→C, given by projection upon the 0th grade
component ofE(A). Then an interpretation of a proof0 `GQ D—namely, an ele-
ment of Hom(0, D)—may be composed with the map0⊗ E(A)

1⊗cA−→ 0⊗C∼=0
to obtain an element in Hom(0⊗ E(A), D). This element is declared to be the
interpretation of the proof obtainedvia LW of the original proof.

LC: A similar argument using the coproductE(A)
ψA−→ E(A)⊗ E(A) (equation

(3.56)). We shall discuss the interpretation of this rule in a little more detail since it
embodies the important notion of quantum copying—orduplication—of storage
capable quantum resources.

For the purposes of this discussion let us introduce labels (orterms) for GQ
sequents. Thus, a sequent0 ` D may be labelled on the left as inf :0 ` D. (This
is equivalent to the notationally more standard expression` f :0∗ ⊗ D.) Rules
should now be introduced for the correct formation of terms as GQ proofs are con-
structed. We shall illustrate only a single short proof, in which these assignments
are self-evident: namely

f :! A `GQ B g :! A `GQ C
R⊗

〈 f, g〉 :! A, !A `GQ B⊗ C
LC

dup! A〈 f, g〉 :! A `GQ B⊗ C

Read operationally,dup! A〈 f, g〉 labels the deduction obtained by “quantum
duplicating” the storage capable resource !A in the preceding sequent, and then
performing the deduction labelled by〈 f, g〉. When interpreted in*F , f and g
may be regarded as the appropriate linear maps, and we have

〈 f, g〉 is interpreted asf ⊗ g

and

dup! A〈 f, g〉is interpreted asf ⊗ g ◦ ψA. (3.58)

L!: A similar argument using the projectionE(A)→ A upon first grade elements.
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R!: It suffices to show this for0 containing at most a single formula, since, if
0≡ A1, A2, . . . , An, !0 is interpreted as !A1⊗! A2⊗ · · ·⊗! An which is isomor-
phic as a coalgebra with !(A1⊕ A2⊕ · · · ⊕ An) (equation (3.55)). Then !0→ A
is interpreted as a mapE(0)→ A. Dualizing this we obtain a mapA∗→ E(0)∗ ∼=
E(0∗). From the universal property ofE( ) this map lifts to a mapE(A∗)→ E(0∗),
and, dualizing again, we obtain a mapE(0)→ E(A). This is the interpretation of
!0 `! A in the conclusion of R!.

All of this could be done much more formally, with little gain in transparency
as far as our endeavors in this work are concerned. That the category of finite
dimensional vector spaces models full LL, with !A taken to beE(A∗)∗, was shown
in Bluteet al. (1993). See also Seely (1989) for a clear discussion of more general
categorical interpretations of LL.

We conclude this section with the following remarks:

• We have shown that, by means of the translation Eqs. (3.45)–(3.48) and
the interpretation described above, IOL may be realized within the familiar
category*F viaa literal use of a quantum version of the Heyting paradigm.
Moreover, the logic of*F , as specified by the rules of GQ, is seen to be
an externalization of the intuitionistic fragment of the logic of each of its
object’s “inner” subspace-lattice models of OL.
• The correct notion of (intuitionistic) “quantum” implication is now seen to

be interpretable in terms of morphisms in*F ; that is, in terms of ordinary
linear transformations between the underlying vector spaces, all of which
are necessarily continuous for any chosen inner products.
• These logical considerations have thrown up a formal specification of the

notion ofstorage capable quantum resource. Such resources would be fun-
damental to any “quantum computational” endeavor, and the exploration
of this notion in one form or another will occupy us for the remainder of
this note and certain sequels to it.

4. QUANTUM COMPUTATION

4.1. A Model of Quantum Computation and the Emergence of the Qubit

The system GQ is empty of physical content, embodying, rather, minimal
rules for making certain deductions about abstract quantum “resources.” The task
before us is to supply physical input in the form of additional axioms (and, in
subsequent papers, additional rules pertaining to the “post-processing” of certain
ensuing deductions). A system obtained by adding axioms to an existing system
(such as GQ) is called by logicians atheory(or a GQ-theory). (Often, extra technical
constraints are put upon these added axioms to ensure desirable deductive behavior,
but we shall not so constrain our (few) axioms here.)
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Specifically, in this note, we shall add a single IOL axiom meant to simulate
a single “time”-stepped deduction or computation which preserves each type.
Here we consider “time”-steps to be resources—necessarily constrained by our
formalism to be “quantum” resources—which are produced to accompany, or label,
such a transformation. This may be expressed in the static, resource insensitive
language of IOL by the axiom

α `IO t u α. (4.1)

Hereα is any IOL formula, andt is an atom. This is meant to capture the idea that
α (re)producesα to the accompaniment (or production) of a single time-step, time-
quantum, or clock-tick. It is a crude attempt to force some preconceived notion of
“time” upon the logicaltabula rasa.

The translation of this into GQ then yields the axiom to be added to GQ,
namely

!αe `GQ!t⊗!αe, (4.2)

or, equivalently (in view of L∗, LE, and R∗):
(!t)∗ `GQ (!αe)∗⊗!αe. (4.3)

Thus, the axiom amounts to the specification of a deduction from (!t)∗ to
(!αe)∗ ⊗ !αe for eachα.

When realized in the category*F , the interpretation of !t is somewhat prob-
lematical, but, whatever interpretation is given to it,αe will be interpreted as a
finite dimensional Hilbert space,W say, of dimensionn, say, and (!αe)∗ ⊗ !αe will
be interpreted as

E(W)∗ ⊗ E(W) ∼= EndE(W).

In view of equation (3.55) we have

E(W) ∼= E(⊕nC)

∼= ⊗nE(C) (4.4)

where E(C)=C⊕C, the two-dimensional Hilbert space. This space, theirre-
ducible quantum storage capable unitin *F , has come to be called (in the quantum
computing literature) thequbit. In view of Finkelstein’s Grassmannian interpre-
tation of the functorE( ), the firstC represents the empty quantum set (or the
zero subspace ofC), while the secondC represents the subspaceC of C, or the
whole quantum set. If quantum superpositions were suppressed, we would have
discovered the ordinary classical bit. Note that bit-based notions were not explicit
in any of the considerations leading up to QG. Thus, the classical bit emerges,
quite appropriately, as a classical degeneration of the spontaneously arising qubit:
quantum notions should indeed underlie classical ones.
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Equation (4.3) thus characterizes a “quantum computation,” taking place in
some version of “quantum time,” as a map from a representer of the dual of the
multiplexed quantum time-step resourcet, namely (!t)∗, to a space of the form
End(⊗nH(2)), whereH(n) denotes a Hilbert space of dimensionn (<∞); that is:
the annihilators or absorbers of finite quantum sets of time-steps are mapped to
endomorphisms of tensor products of qubits.

The problem here is that the formalism seems to have worked too well in that
“time” is also necessarily finitely or constructively quantized when forced into
the picture, whereas the exigencies of macroscopic existence might require us to
adopt a model of time that is infinite and classical. In order to attempt to redress
this problem, and arrive at the standard notion of a quantum computation, we will
need to step outside the categorical confines of*F . This will be done in Section
4.3. First, we are required to interpret rather more fully the notion of quantum
duplication.

4.2. Quantum Duplication as Entanglement

As we have noted, the general storage capable object in*F is of the form
E(H(n))= ⊗n H(2): such a tensor product of qubits has come to be called aquantum
register.

The quantum duplication operatorthat interprets the GQ Contraction rule,
namely

!H(n), !H(n), 0 ` D

!H(n), 0 ` D
, (4.5)

is the coproductE(H(n))→ E(H(n))⊗ E(H(n)). Moreover, in light of the coalge-
bra isomorphism equation (3.55), which now readsE(H(n))∼= ⊗n H(2), it will be
sufficient for our purposes to discuss the quantum duplication operator for the case
of a single qubitH(2).

At this point there arises an unfortunate clash of notations. When the qubit
is realized as the coalgebraE(C)=C⊕C, the first component is generated by
the unit of this algebra which is usually denoted by 1, and, since the coproduct
ψ :E(C)→ E(C)⊗ E(C) preserves units, we have

ψ(1)= 1⊗ 1. (4.6)

For an elementx of the otherC component we have (cf. equation (3.56))

ψ(x) = 1⊗ x + x ⊗ 1. (4.7)

In the quantum computational context, a basis{1, x} of the qubit would be
written, when normalized, as{|0〉, |1〉}: as noted, the first element corresponds to
the empty quantum set and the second to the whole quantum set. The duplication
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operations expressed by the above equations become

ψ(|0〉) = |0〉 ⊗ |0〉 (4.8)

ψ(|1〉) = |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 (4.9)

relative to the chosen so-calledcomputational basis{|0〉, |1〉}.
Thus, quantum duplication applied to the “off” computational basis element

|0〉 produces a simple homogeneous pure state of the combined systemH(2)⊗H(2),
whereas duplication applied to the “on” basis element emphatically does not. In-
deed, the state corresponding to the right hand side of equation (4.9) is amaximally
entangledstate.

The duplication mapψ applied to any vector inH(2) will be a linear combina-
tion of the right hand sides of equations (4.8) and (4.9), and one of the upshots of our
logical machinations is that quantum duplication, namely, that quantum process
which corresponds to the classical possibility of freely copying a resource,must
in general entail quantum entanglement. This is borne out in the standard theory
of quantum computing, where quantum entanglement has been recognized as a
fundamental resource and must be used in subtle ways, for instance to implement
the transmission of quantum states by “teleportation.” Na¨ıve attempts to copy such
states would be confounded in view of the so-called “No Cloning” Theorem (see
for example, Hirvensalo, 2001; Nielsen & Chuang, 2000).

It seems rather remarkable that “merely” logical considerations have led di-
rectly to this subtlety regarding quantum duplication.

4.3. Quantum Computing in Classical Time

We will extend the interpretation of coproducts as quantum duplication-via-
entanglement to other coalgebras in an attempt to interpret our axiom (4.3) with
the multiplexed time-step type !t now interpreted “classically.”

To render classical the type !t we need to interpret it in classical terms. This
can be done by modelling! not by the exterior algebra but by the free commutative
algebra generated by the space in question. In our case, this may be viewed as the
bosonic Fock space of the one-dimensional Hilbert space, which may be identified
with the one-dimensional affine algebraic groupC[t]: this is just the usual complex
polynomial algebra in the indeterminatet, equipped with the bialgebra structure
described as follows. The coproductψ :C[t]→C[t]⊗C[t] is that algebra map
determined by

ψ(t) = 1⊗ t + t ⊗ 1 (4.10)

and the counit is given byc(t)= 0. Since it is only time that is being treated
classically here, we maintain the quantum interpretation of ! in the other parts of
axiom (4.3).
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Thus, we are required to specify a map

φ : C[t]∗ → End
(⊗n H(2))

. (4.11)

We shall make two assumptions concerning this map which together will
yield theSchr̈odinger optionfor describing the classically timed dynamics of a
quantum register. The first of these concerns the notion of duplication. Thequantum
duplication of a resource corresponds to the classical operation of copying or
repeating the resource. Our first requirement onφ is that it should respect this
type of repetitive behavior: in other words,φ should be required to match the
repetitive behavior of the resource “time” to that of the target resource—a sort of
synchronization assumption. Thus,φ is required torespect quantum duplication:
for f, g∈C[t]∗, we should have

φ
(
dupC[t ]〈 f, g〉) = dupEnd(⊗nH(2))〈φ( f ), φ(g)〉 (4.12)

or, from equation (3.58),

φ( f ⊗ g ◦ ψA) = φ( f )⊗ φ(g) ◦ ψE, (4.13)

whereψ andψE denote the coproducts respectively ofC[t] and End (⊗nH(2)). The
latter coproduct is the dual of the algebra product on the space of endormorhismsvia
its canonical self-duality. (ForW finite dimensional we have EndW∼=W∗ ⊗W∼=
(W⊗W∗)∗ ∼= (EndW∗.)

Equation (4.13) is exactly the requirement thatφ be an algebra map for the
algebra structures dual to the respective coalgebra structures. The dual algebra
product on End (⊗nH(2)) is, by design, just the usual one, while the commutative
algebra product onC[t]∗ is easily described.

First, we denote byδm the element inC[t]∗ dual to the basis elementtm of
the vector spaceC[t], m= 0, 1,. . . , so that

δm(tn) = δm,n, (4.14)

whereδm,n denotes the usual Kronecker delta. Then elements ofC[t]∗ may be
conveniently written as formal sums of the form6cnδn.

Proposition 4.1. The commutative algebra product, denoted∗, induced upon
C[t]∗ by the dual of the coproductψ of the Hopf algebraC[t] is given by

δm ∗ δn =
(

m+ n

m

)
δm+ n

= (m+ n)!

m!n!
δm+ n. (4.15)

Proof: For anym, n, k
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(δm ∗ δn)(tk) = (δm⊗ δn)(ψ(tk))

= (δm⊗ δn)(ψ(t)k)

= (δm⊗ δn)(1⊗ t + t ⊗ 1)k

= (δm⊗ δn)

(∑
l = 0

(
k

l

)
tl ⊗ tk− l

)

=
∑
l = 0

(
k

l

)
δm,l δn,k− l . (4.16)

This sum can be non-zero only ifm+ n= k, and, when this is the case, the single
surviving term occurs whenm= l .

Thus,

(δm ∗ δn)(tk) =
(

m+ n

m

)
δm+ n,k

=
((

m+ n

m

)
δm+ n

)
(tk). (4.17)

¤

It follows immediately from equation (4.15) that

δm+ n = m!n!

(m+ n)!
δm ∗ δn, (4.18)

so that, forn > 0,

δn = 1

n
δn− 1 ∗ δ1

= 1

n!

n︷ ︸︸ ︷
δ1 ∗ · · · ∗ δ1

= 1

n!
δn

1. (4.19)

Thus, general elements ofC[t]∗ may be expressed in the form∑ cn

n!
δn

1 (4.20)

andφ, being an algebra map, will be specified onceφ(δ1) is assigned.
Now, it is classical that the set of algebra morphisms HomAlg(C[t], C), of

C[t] into C, with product operation inherited from the algebra product onC[t]∗,
may be identified with the additive group ofC. This identification is obtained by
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noting that every element of HomAlg(C[t], C) is given by

hz(tn) = zn, (4.21)

for somez∈C. That the associationhz 7→ z is a group morphism is immediate (cf.
Abe, 1977, Ch. 4).

Thesehz may be written (for eachz∈C) in the form

hz = δ0+ zδ1+ z2δ2+ z3δ3+ · · ·

= δ0+ zδ1+ z2

2!
δ2

1 +
z3

3!
δ3

1 + · · · (4.22)

from equation (4.19). Thus we obtain a map

C→ End
(⊗n H(2)) (4.23)

given formally by

z 7→ φ(hz) = I + zφ(δ1)+ z2

2!
φ(δ1)2+ · · · , (4.24)

sinceδ0 is the unit for∗.
Supposing time to be real, we restrict to the additive subgroupR of C to

obtain the map

R→ End
(⊗n H(2)) (4.25)

given by t 7→ exp(tφ(δ1)). Though defined formally, this series will always
converge.

The second Schr¨odinger-like assumption onφ concerns the interpretation of
δ1. The logical atomt was introduced to represent the notional generic “time-
step.” Let us now take it more literally to represent the generic infinitesimal time
differentialdt. Then, its linear dualδ1 should be interpreted as the dual ofdt, which
is the tangent∂/∂t . As an operator, densely defined uponL2(R), it has the property
that (

∂

∂t

)†
= − ∂

∂t
, (4.26)

where the dagger denotes the Hilbert space adjoint.
Our second assumption onφ is that it should be chosen to preserve this

(virtual) property ofδ1; that is,

φ(δ1)† = −φ(δ1). (4.27)

Then we may choose

φ(δ1) = −i H (4.28)

for some Hermitian matrixH .
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Thus, the map realizing the action of time (or, rather, the action of time
intervals) that constitutes a “quantum computation” may be written in the form
t 7→ e−i Ht . (The physical interpretation ofH is, up to an additive real constant, as
the operator Hamiltonian of the system.)

Despite its formality, this model seems to have revealed the major qualitative
aspects of those processes called quantum computations. To wit

• the unitarity and time reversibility of the processes;
• the structure of the underlying Hilbert space as a quantum register, or tensor

product of qubits;
• the primary rôle of quantum entanglement as a resource in the implemen-

tation of quantum duplication.

We note also that the unitarity of the action of the dynamical operator entails
the preservation, through the computation, of the associated Kripke orthomodel
and subspace lattice structures.

We have arrived at the point at which the current treatments of the embryonic
theory of quantum computation start, and interested readers could consult the vast
and burgeoning list of works devoted to this fascinating subject. In subsequent
work we will return to the problem of term assignments for GQ, and possible
applications of the theory.

Questions for further consideration include the following:

1. Are there lattice characterizations of IOL? Such lattices might stand in
relation to ortholattices as Heyting algebras do to Boolean algebras.

2. Does the translation theorem (Theorem 3.4) have a converse?
3. Is CUT eliminable from proofs in GQ?
4. Do other categories exist in which GQ is realizable?
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